
EUROPE'S LEADING AEM DEVELOPER CONFERENCE
27th – 29th SEPTEMBER 2021

Promoting Solid Code Architecture in AEM
Daniel Strmečki, ecx.io - part of IBM iX

Introduction

2

▪ Web development, Java, AEM,
software craftsmanship, testing,
reusability, architecture,
coaching
▪ https://www.linkedin.com/in/strmecki/
▪ https://www.baeldung.com/author/dani

elstrmecki/
▪ daniel.strmecki@ecx.io

Director
Digital Platforms

at ecx.io,
part of IBM iX

https://www.linkedin.com/in/strmecki/
https://www.baeldung.com/author/danielstrmecki/
mailto:daniel.strmecki@ecx.io

Agenda

3

1) Learning AEM
2) Architecture Patterns
3) The Glue for Our Code
4) Architecture Rules
5) Best Practices

6) Coding Guidelines
7) Custom Quality Rules
8) Conclusion
9) Questions

4

Learning AEM

Learning AEM

5

▪ Adobe Experience Manager is not the
simplest Web development framework to
master
▪ Sling works quite differently compared to most

popular choices like Spring or Java EE
▪ You cannot simply apply MVC pattern
▪ You won’t find a controller Java class

Code Architecture

6

▪ Adobe teaches
us AEM
runtime
architecture

▪ But what does
that mean for
our code?

7

Architecture Patterns

The N-Tier Pattern

8

▪ In an enterprise
architecture, AEM
is usually in the
top layer / tier
(presentation)

The MVC Pattern

9

▪ MVC cannot be
applied to AEM
components

▪ Sling Models are not
Controllers, because
Apache Sling handles
script resolution

The MVVM Pattern

10

▪ The View (HTL) binds
to the methods
provided by the View-
Model (Sling Model)

▪ The View-Model (Sling Model) calls the business
logic implemented in dedicated components
(OSGi Services)

11

The Glue for Our Code

Sling Models

12

▪ Sling Models are the glue between our UI,
database and business logic

▪ Heavily misused on a lot of AEM projects
▪ Can easily become very large if separation of

concerns is not applied properly
▪ Injecting data, providing view methods,

implementing logic, injecting other models

Example – Sling Models

13

▪ Connect data with
business logic

▪ Keep it simple
▪ Move business logic to

dedicated OSGi
services

Example – OSGi Services

14

▪ Highly
reusable

▪ Easily
testable
▪ TDD
▪ BDD

15

Architecture Rules

ArchUnit

16

▪ Library for checking the architecture of your
Java code using Junit
▪ https://www.archunit.org/

▪ ArchUnit can check dependencies between
packages and classes, layers and slices, check
for cyclic dependencies and more
▪ https://github.com/dstr89/aem-archunit

https://www.archunit.org/
https://www.archunit.org/

Example – OSGi Services

17

▪ Only interfaces
allowed

▪ Force a naming
convention

▪ Classes are
annotated

Example – Sling Models

18

▪ Dependencies
between
packages

▪ No static
methods
allowed

19

Best Practices

Value of Documentation

20

▪ Agile value misconception
▪ „Working software over comprehensive

documentation”

▪ Make notes on the good practices that you see
on different projects
▪ We always refer to previous projects and lessons

learned

Example – OSGi Services

21

▪ Place business logic in Services, not Utils
▪ Single Responsibility and Open-Closed Principle

▪ Prefer Sling APIs over JCR
▪ Close service resource resolver

Example – Sling Models

22

▪ Use injector-specific annotations
▪ Instead of using @Inject everywhere

▪ Log runtime exceptions in @PostConstruct

Example – Avoid adaptTo

23

▪ Doesn’t throw exceptions, harder to mock

24

Coding Guidelines

Promoting Best Practices

25

▪ With time, a set of notes can become
company coding guidelines
▪ Share them with everyone in the company
▪ Anyone can and should contribute
▪ Use them to align with other developers
▪ Use them to coach junior developer

Benefits of Guidelines

26

▪ Boost quality and align codebases
on all your AEM projects

▪ Learn on mistakes others made
▪ Easy to switch people on projects
▪ Brings competitive advantage

through quality KPIs and
expanding existing client
engagements

27

Custom Quality Rules

Static Code Analysis

28

▪ Coding guidelines can be automated using a
set of custom SonarQube rules

▪ Automated checks, together with pull-request
decoration feature, helps us ensure that
guidelines really do get applied on all projects
▪ If it not automated, it probably won’t be used

Example – Rule Definition

29

Example – Rule Usage

30

▪ SonarLint

▪ BitBucket

31

Conclusion

Summary

32

▪ AEM doesn’t follow the MVC pattern, instead
it more aligned with the MVVM

▪ Define a clear separation of concerns
▪ Just because we can write all the code in the Sling

Model, doesn’t mean we should
▪ Use OSGi Services as much as possible, as they

promote reusability and testability

Conclusion

33

▪ Coding guidelines help boost quality and
alignment between project teams
▪ Architectural and SonarQube rules ensure that

guidelines actually do get applied on projects

▪ Creating internal guidelines and assets
requires a significant team effort, but it pays
off in the long term

34

Thank you! Questions?

