
EUROPE'S LEADING AEM DEVELOPER CONFERENCE
27th – 29th SEPTEMBER 2021

Designing a cluster-aware application
Jörg Hoh, Adobe

What is this talk about?

2

▪ Details of AEM clustering
▪ Its direct impact on common APIs and

application patterns
▪ How to reflect this in your application

$ whoami

3

▪ Jörg Hoh, @joerghoh
▪ 10+ years experience with

AEM/CQ5
▪ SRE @ Adobe

Farm vs Cluster (logical view)

4

Repository Repository

ClusterFarm

AEM AEM AEM AEM AEM

Repository

AEM

Repository

AEM

Specifics of a shared repository

5

▪ Multiple AEM instances read and write
to the same repository.

▪ Changes made in a single cluster node
can trigger changes in other cluster
nodes.

▪ Eventually consistent

Eventual consistency

6

R
ep

o
si

to
ry

AEM

AEM

AEM

AEM

Lo
ad

b
al

an
ce

r

Affinity cookies to
ensure stable routing

Sync delay up to 2 sec

Concurrency in an AEM cluster

7

Same rules as in non-clustered AEM instances
▪ MVCC pattern: Concurrent updates get not

visible during the runtime of a session unless
you invoke refresh()

▪ Expect InvalidItemStateExceptions when
modifying nodes concurrently

Concurrent writes in an AEM cluster

8

Same rules as in non-clustered AEM instances

Repository HEAD

Session 1 /content/page1

Session 2 /content/page2

Session 3 /content/page2

Invalid
ITemState
Exception

One event -- multiple event handlers

9

R
ep

o
si

to
ry

AEM

AEM

AEM

AEM

Event

Event

Event

Event

JCR Observation Listener

10

▪ By default you see all changes in the
repository, including changes made on other
cluster instances.

▪ You might handle the same event n times.
▪ Avoid any assumption that a local change has

triggerd this event.

JCR Observation Listener

11

Repository

AEM 1 AEM 2 AEM 3 AEM 4

1) Perform
change in the
repository

2) Change
notfication

3) JCR event handler

JCR Observation – receive only local events

12

JackrabbitEventFilter ef = new JackrabbitEventFilter()

.setAbsPath("/content/mysite")

.setNodeTypes(new String[{"cq:Page"})

.setEventTypes(Event.NODE_ADDED)

.setIsDeep(true)

.setNoExternal(true);

JackrabbitObservationManager om =

(JackrabbitObservationManager)

session.getWorkspace().getObservationManager();

om.addEventListener (this, ef);

Sling ResourceChange Event Listener

13

▪ Abstracted JCR Observation
▪ Just local events: implement the
ResourceChangeListener interface

▪ All events: implement the
ExternalResourceChangeListener

interface

Sling Events

14

▪ Normally used just locally.
▪ Distributed events possible, but rarely used.
▪ Mark events as distributable by adding the

property “event.distribute” to the event
properties.

Sling Jobs

15

▪ Nothing has changed.
▪ Exactly once guarantee

AEM workflows

16

▪ Luckily, AEM takes care of that.
▪ Workflows can be invoked on any node, but

are executed only on the cluster leader.

Scheduler

17

▪ Each clusternode has its own scheduler.
▪ Support to run only once in a cluster

(property “scheduler.runOn=LEADER”)
▪ These jobs will only start on the cluster leader.

Usecase: cache

18

▪ In memory caches must always reflect the
current state of content in the repository.

▪ It must not be maintained by the code
modifying this content, but only by JCR
Observation / ResourceChangeListener

Usecase: Execute a task exactly once

19

▪ Easiest: When there is a triggering action, let
this action create a Sling Job or workflow.

▪ Scheduled job (”scheduler.runOn=LEADER”)
▪ Trigger it externally via a request

Conclusion

20

1 change -> multiple events

▪ Check all your event handlers!
▪ Do you have code, which needs to run exactly

once?

Conclusion

21

Eventual consistency

▪ Respect the affinity cookie!

Thank you

22

@joerghoh

https://cqdump.joerghoh.de

