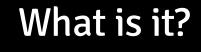
adaptTo()

EUROPE'S LEADING AEM DEVELOPER CONFERENCE 28th – 30th SEPTEMBER 2020

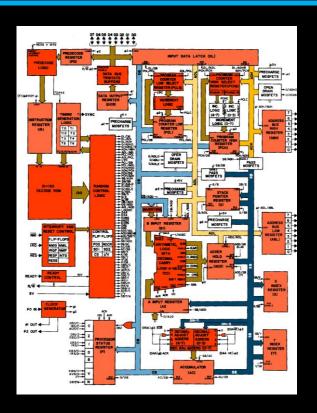
Lightning Talk – 8-bit Breadboard Computer Martin Noble, ecx.io, part of IBM iX

www.martinnoble.com

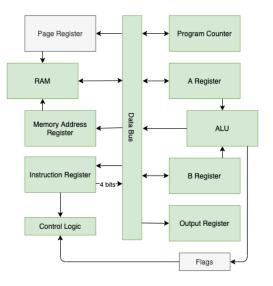
What is it?



What is it?


Custom 8-bit computer Based on project by **Ben Eater** Work in progress! 6502, but simpler

MUCH simpler!



8-bit data bus

- 16-bit address bus
- 16-bit Program Counter
- 8 Bit Accumulator, X and Y
- 56 instructions, 8 addressing modes

Breadboard computer

8-bit bus

- 8-bit Program Counter
- 8-bit A & B Registers
- 9 instructions, 4 addressing modes

Instruction Set

	Addressing Mode										
	Implied (1)		Immediate (2)		Absolute ZP (2)		Absolute (3)				
JMP	0×0*	0000****	0×A0	10100000							
LDA	0×1*	0001****	0×B0	10110000	0xB4	10110100	0×B8	10111000			
LDA	0x2*z	0010****									
STA	0×3*z	0011****			0xC4	11000100	0xC8	11001000			
ADD	0×4*	0100****	0xD0	11010000	0xD4	11010100	0xD8	11011000			
	0×5*z	0101****									
SUB	0хб*	0110****	0×E0	11100000	0xE4	1110100	0×E8	11101000			
505	0x7*z	0111****									
TAO	0×80	10000000									
BEQ	0×9*	1001****	0xA4	10100100							
BCS	⊙×A*	1010****	0×A8	10101000							
HLT	0×F0	11110000									

**** indicates low nibble interpreted as a value Z indicates "implied zero page" where RAM is a 4-bit address 0-16

- Understand how processors work
- Get away from screen
- Who doesn't love blinkenlights?

Simple Program

Super simple program – multiples of 2

00	10		LDA	# O	;	load 0 into accumulator
01	40		ADD	# O	;	add 0 - clears B reg
02	80		TAO		;	clear output
03		loop:				
03	42		ADD	#2	;	add 2
04	80		TAO			
05	03		JMP	loop	;	jump back to loop

DEMO TIME!

Steps in processing an op-code

Instructions have variable cycle counts
Example: ADD #2 (42) – 3 cycles

Cycle	Operations
0	Counter Out, Memory Reg In
1	Zero Page, RAM Out, Instruction Reg In, Counter Enable
2	Instruction Reg Out, B Reg In
3	Sum Out, A Reg In
4	Cycle reset (transient)

- Me: <u>https://www.martinnoble.com</u>
- Ben Eater: <u>https://eater.net/</u>
- Visual 6502: <u>http://www.visual6502.org/</u>