
EUROPE'S LEADING AEM DEVELOPER CONFERENCE
28th – 30th SEPTEMBER 2020

Don't use the repository structure as your
primary abstraction!
Jörg Hoh / Adobe Systems

What is this talk about?

2

▪ In AEM projects very often low-level
features are used, which hardcode
repository structure and often are error-
prone to use.

▪ I want to show how you can overcome
this problem by introducing proper
domain abstractions.

$ whoami

3

▪ Jörg Hoh, @joerghoh
▪ Architect, Adobe
▪ 10+ years with AEM/CQ5

What’s the problem?

4

▪ The only broadly accepted
and used abstractions
provided by AEM:
▪ Page
▪ Asset

▪ And the low-level ”Resources”,
”Nodes” and “Properties”

5

▪ Examples for missing abstractions
▪ Site (”What is the homepage for the German site?”)

▪ Product (“what’s the name of product XY?”)

▪ Product Category (“Give me all products of category A”)

▪…

Missing models

6

▪ We just focus on the UI elements of a page and
create models for it (CarouselModel,
NavigationModel, …).

▪ For everything else we use Resources, Nodes,
and a lot of utility functions.

▪ These hardcoded structures and implicit
assumptions make evolution very hard.

CRXDE driven development

7

The anti-pattern – an example

8

▪ Get the contact address which is stored on a
site level.

The anti pattern – an example

9

Page getSiteRoot(Resource r) {

// iterate up the tree up

// until the root page is found

}

Page root = getSiteRoot(currentPage.getResource());

Page settings = root.getChild(“settings”);

String contactAddress = settings.getValueMap()

.get(“contactAddress”);

Potential NPE!

Hardcoded repository
structure

A better version of it

10

String contactAdress =

Optional.ofNullable(currentPage.adaptTo(Site.class))

.map(site -> site.getSettings())

.map(settings -> settings.getProperty(“contactAddress”)

.orElse(return “default”);

• Error handling included
• No resource, no valueMap, no assumptions
• Easier refactoring, easier reasoning, easier debugging

Our goal

11

▪ Avoid using resources when better
abstractions are available!

▪ If there are no abstractions, create them!
▪ Do not deal with paths!
▪ Error cases should be easy to spot and to deal

with.

Build domain objects

12

How?

13

▪ You normally know all your domain models
from the discovery phase of your project

▪ Model them explicitly
▪ If they are represented in the repository: make

them available via resource.adaptTo()

What’s the benefit of it?

14

▪ You and your team can practice DRY
▪ Avoid all the “get me the Site root” utility methods

scattered across you codebase

▪ Centralize and harmonize the validation of
your constraints

▪ Refactoring of code and content gets much
easier

15

Example

The missing concept in AEM …

The “site” object

Site structure

16

This 3-level structure is widely
known and used
▪ Brand site
▪ Country site
▪ Language site

Typical operations we need

17

▪ To what country belongs the current page?
▪ Is this page available in other languages?
▪ What’s the contact address for the current site

(language specific with country fallback)?
▪ …

How is it used?

18

String countryName =

currentPage.adaptTo(CountrySite.class)

.getLocalizedCountryName();

• We don’t care how it is determined.
• And based on the available languages it could even

return “Deutschland” when currentPage belongs to
de/de and “Germany” for de/en.

To what country belongs currentPage?

How is it used?

19

String relativePath =

currentPage.adaptTo(LanguageSite.class)

.getRelativePath(currentpage);

Page[] siblingsInOtherLanguages =

currentPage.adaptTo(CountrySite.class)

.getLanguageSites().stream()

.map(ls -> ls.getRelativePage(relativePath))

.filter(Objects::NotNull)

.toArray();

Is this page available in other languages?

The Implementation of the sites

20

▪ Checkout the code at
https://github.com/joerghoh/adaptto2020-
domains

Remember our goals

21

▪ Avoid using resources when better
abstractions are available!

▪ If there are no abstractions, create them!
▪ Do not deal with paths!
▪ Error cases should be easy to spot and to deal

with.

Call to action

22

▪ Identify the concepts you are constantly using
in your daily discussions.

▪ Implement these concepts and facilitate the
adapter pattern to make them universally
available.

24

Q&A

Questions? Contact me
@joerghoh
https://cqdump.wordpress.com/about

