
EUROPE'S LEADING AEM DEVELOPER CONFERENCE
28th – 30th SEPTEMBER 2020

Behaviour vs Implementation Testing in AEM
Daniel Strmečki, ecx.io, part of IBM iX



2

How, Why, When and What to Test?



How to test?

3

▪ This question has already been answered
▪ https://junit.org/junit5/
▪ https://site.mockito.org/
▪ https://wcm.io/testing/aem-mock/

▪ In this session
▪ We will not talk about tools and libraries
▪ Instead we will focus on our testing strategy

https://junit.org/junit5/
https://site.mockito.org/
https://wcm.io/testing/aem-mock/


Why test?

4

Writing tests does take time, but…
▪ It makes us faster in the long run
▪ It improves quality, design and 

maintainability



When to test?

5

▪ Whenever you write business logic
▪ Writing test suites just to have high code 

coverage leads to test that are 
▪ brittle (easy to break)
▪ hard to read and 
▪ do not support easy refactoring



What to test?

6

▪ Testing strategy – guidelines on what to test
▪ Some basics

▪ Test requirements - behaviour or functionality 
over implementation details

▪ Test the business logic your write, not the 
framework or libraries you use

▪ Test the APIs you expose, not internal details



7

Unit vs Integration Testing?



The basic difference

8

▪ Unit tests are written by developers to test a 
single unit of code (service or model) we 
developed

▪ Integration testing is a type of testing to check 
if different components, services or modules 
are working together towards a common goal 
(requirement)



How to decide?

9

▪ In general, prefer integration testing
▪ Focus on behaviour and requirements, not internal 

implementation details
▪ Mocking is hard work and requires maintenance
▪ Takes less time to achieve the same coverage

▪ Unit tests are still welcome to test 
complicated business logic of specific units



10

What's Specific in AEM?



Integration testing in AEM

11

▪ Integration tests can be written and run using 
mocks, not only running instances as 
recommended by Adobe

▪ JUnit, Mockito and AEM Mocks are mature 
libraries for writing integration and unit tests
▪ Similar approach to Spring Mock MVC



What (not) to test in AEM?

12

▪ Useless testing
▪ Testing (or mocking) a Utility class
▪ Testing a data class or a Sling Model, that contains 

no business logic

▪ In AEM, integration tests should usually be 
written for Sling Models, REST Services and 
Servlets



13

Time for Live Demo!



14

Key Takeaways!



Some best practices

15

▪ Invest the needed time to describe what you 
are testing (given-when-then)

▪ Write business logic in services and create 
mocks based on their interfaces

▪ Separate mocked classes from test classes to 
make tests cleaner



Things to remember

16

▪ Test the business logic you write, not the 
framework or libraries you are using

▪ Only test the things you expose, your public 
API, nothing else

▪ Secure time for writing tests in advance, it 
needs to be planned



Let's end with a quote

17

Managers may defend the schedule and 
requirements with passion; but that’s their job.

It’s our job to defend the code quality with equal 
passion.

By Robert C. Martin



References

18

▪ Examples available on GitHub
▪ https://github.com/dstr89/aem-unit-vs-integration

▪ Test behaviour, not implementation 
▪ https://dev.to/mkovacek/test-behaviour-not-

implementation-3g2j
▪ by Matija Kovaček

https://github.com/dstr89/aem-unit-vs-integration
https://dev.to/mkovacek/test-behaviour-not-implementation-3g2j


The End

19

▪ Java, Web, AEM, software 
craftsmanship, testing, 
reusability, architecture, 
knowledge sharing…
▪ https://www.linkedin.com/in/

strmecki/
▪ daniel.strmecki@ecx.io

https://www.linkedin.com/in/strmecki/
mailto:daniel.strmecki@ecx.io


20

Thank you.


