
EUROPE'S LEADING AEM DEVELOPER CONFERENCE
28th – 30th SEPTEMBER 2020

Get ready for the Cloud! - AEM Cloud Service Migration
Best Practices

Andreea Moise, Adobe

About the Speaker

2

Andreea Moise
Sr. Software Engineer @ Adobe
Bucharest
https://twitter.com/pudelyna

https://twitter.com/pudelyna

The Benefits

3

The Journey

4

5

Planning

Steps

6

Cloud Service Readiness

7

▪ Cloud Readiness Analyzer - Areas that require
refactoring

▪ Cloud Manager code quality pipeline - Your
current AEM source code against the changes and
deprecated features in AEMaaCS

The Changes in AEMaaCS

8

CHANGED

Immutable /apps and /libs
Repository-based OSGI

bundles
Publish-Side Delivery

Asset Handling and Delivery

GONE

Replication Agents
Classic UI

Custom Runmodes
Changes to publish repository

9

Custom Code Quality rules - SonarQube

10

Custom Code Quality rules - OakPAL

11

12

Execution

Steps

13

Content Transfer

14

▪ WHAT?
Existing content and principals (users or groups) from a

source AEM instance (on-premise or AMS) to the target
AEMaaCS instance

▪ HOW?

Code Refactoring – Package Structure

15

AEMaaCS Package Structure

Code Refactoring - Development Guidelines

16

Code Refactoring - Tools

17

▪ Asset Workflow Migration
▪ AEM Dispatcher Converter
▪ AEM Modernization Tools

▪ Static templates to editable templates
▪ Design configurations to policies
▪ Foundation Components to Core Components
▪ Classic UI to Touch-Enabled UI

Best Practices for Code Deployment and
Testing

18

▪ Code Quality Testing Ratings
▪ Security rating < B
▪ Reliability rating < C
▪ Maintainability rating < A
▪ Coverage < 50%
▪ Skipped Unit Tests > 1
▪ Open Issues > 0
▪ Duplicated Lines > 1%
▪ Cloud Service compatibility> 0

Best Practices for Code Deployment and
Testing

19

▪ Custom Functional Testing
▪ packaged as a separate JAR file
▪ class names of the actual tests
to be executed must end in IT

Best Practices for Code Deployment and
Testing

20

<!-- Create self-contained jar with dependencies -->

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-assembly-plugin</artifactId>

<version>3.1.0</version>

<configuration>

<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>

<archive>

<manifestEntries>

<Cloud-Manager-TestType>integration-test</Cloud-Manager-TestType>

</manifestEntries>

</archive>

…

</plugin>

Best Practices for Code Deployment and
Testing

21

▪ Content Audit Testing
▪ Lighthouse checks
▪ Tests
▪ Scores and Score Variability
▪ Guidance

22

AEMaaCS Package Structure

23

AEMaaCS Package Structure

24

Go-Live

Best Practices for Go-Live Preparations

25

▪ Schedule code and content freeze period
▪ Perform final content top-up
▪ Complete testing iterations
▪ Run performance and security tests
▪ Always create a fallback plan
▪ Cut-Over

26

Summary

What we learned?

27

▪ How to plan a migration to Cloud Service
▪ How to execute it by

▪ Content transfer
▪ Codebase refactoring

▪ How to have a successful Go-Live

28

Q&A

29

Appendix

Custom Code Quality rules - SonarQube

30

▪ HTTP requests should always have socket and connect timeouts
▪ Product APIs annotated with @ProviderType should not be implemented or

extended by customers
▪ ResourceResolver objects should always be closed
▪ Do not use Sling servlet paths to register servlets
▪ Logging and exception handling rules
▪ Avoid Hardcoded /apps and /libs Paths
▪ Sling Scheduler Should Not Be Used
▪ AEM Deprecated APIs Should Not Be Used

Custom Code Quality rules - OakPAL

31

▪ Customer Packages Should Not Create or Modify Nodes Under /libs
▪ Packages Should Not Contain Duplicate OSGi Configurations
▪ Config and Install Folders Should Only Contain OSGi Nodes
▪ Packages Should Not Overlap
▪ Default Authoring Mode Should Not Be Classic UI
▪ Components With Dialogs Should Have Touch UI Dialogs
▪ Packages Should Not Mix Mutable and Immutable Content
▪ Reverse Replication Agents Should Not Be Used

Code Refactoring - Development Guidelines
1/2

32

▪ State in Memory
▪ State on the Filesystem
▪ Observation
▪ Background Tasks and Long Running Jobs
▪ Outgoing HTTP Connections
▪ No Classic UI Customizations

Code Refactoring - Development Guidelines 2/2

33

▪ Avoid Native Binaries
▪ No Streaming Binaries through AEM as a Cloud Service
▪ No Reverse Replication Agents
▪ Forward Replication Agents Might Need to be Ported
▪ AEMaaCS logs available through Cloud Manager
▪ CRXDE lite available on the development environment

but not on stage or production

Resources

34

▪ AEMaaCS Architecture
▪ AEMaaCS Archetype
▪ Asset Workflow Migration Tool
▪ Dispatcher Converter Tool
▪ AEM Modernization Tools
▪ https://github.com/adobe/aem-testing-clients
▪ https://github.com/adobe/aem-test-samples

https://docs.adobe.com/content/help/en/experience-manager-cloud-service/core-concepts/architecture.html
https://docs.adobe.com/content/help/en/experience-manager-core-components/using/developing/archetype/overview.html
https://github.com/adobe/aem-cloud-migration
https://github.com/adobe/aem-cloud-service-dispatcher-converter
https://github.com/adobe/aem-modernize-tools
https://github.com/adobe/aem-testing-clients
https://github.com/adobe/aem-test-samples

