
APACHE SLING & FRIENDS TECH MEETUP
2 - 4 SEPTEMBER 2019

OSGi best practices
Christian Schneider Adobe

Christian Schneider

2

▪ Computer scientist
at Adobe

▪ Apache member and
committer

▪ Twitter @schneider_chris
▪ Website liquid-reality.de

https://twitter.com/schneider_chris
http://www.liquid-reality.de/

Agenda

3

• Create bundles the lean way
• How to avoid Start Levels
• Best practices around DS
• Loose coupling and easy application assembly

4

Creating bundles

How you used to create bundles

5

▪ Maven bundle plugin
▪ Detailed setup in each pom.xml
▪ Explicit export package with version

Error prone
Breaks with refactoring

How you used to create bundles

6

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>

<instructions>
…

</instructions>
</configuration>

</plugin>

How you used to create bundles

7

<Export-Package>
org.apache.karaf.diagnostic.management

</Export-Package>
<Import-Package>

com.sun.management*;resolution:=optional,
*

</Import-Package>
<Private-Package>

org.apache.karaf.diagnostic.command,
org.apache.karaf.diagnostic.common,
…

</Private-Package>
<Bundle-Activator>

org.apache.karaf.diagnostic.internal.Activator
</Bundle-Activator>

Source: Apache Karaf diagnostic plugin

https://github.com/apache/karaf/blob/c0ffaeaf410ccf354e9ecaada7f725f44f6d448c/diagnostic/core/pom.xml#L98-L122

Create bundles the lean way

8

▪ Use bnd-maven-plugin only in parent
▪ In each bundle define exports, requirements and capabilities

using OSGi R7 annotations
▪ Imports are handled automatically
▪ Use bnd.bnd file only in case you need manual override

Exporting a package

9

package-info.java

@org.osgi.annotation.versioning.Version(”1.2.0")
@org.osgi.annotation.bundle.Export
package my.package;

Use Semantic versioning

10

When do you need to increase a package version?

Hard to do manually

▪ Configure semantic versioning plugin
▪ Current API is compared to last release
▪ Build failure when a package export

version increase is needed

11

Start order and services

Why is start order frowned upon in OSGi?

12

▪ Allowing any order give the system room for optimization
▪ Bundles can be uninstalled and installed at any time
▪ Deadlocks on forced order

React on services instead of enforcing start order

Why people use start oder

13

▪ Code requires certain state of system
▪ How to make sure this state is reached?

Start order looks like a good solution (at first)

How to not use services

14

ref = context.getServiceReference(HealthCheck.class);
service = context.getService(ref);

Why is this bad?
▪ Have to check for null
▪ Service may be not (yet) registered
▪ If you repeat and wait you block threads
▪ You need to unget the service after use

Is ServiceTracker better ?

15

tracker = new ServiceTracker<HealthCheck,
HealthCheck>(context, HealthCheck.class, null);
tracker.getService();

Not better than context.getService() !

We need something reactive !

16

Component best practices

Always use a DI framework in OSGi

17

@Component
Class MyClient {
@Reference MyService myService;

}

Let Declarative Services solve this for you.

Internal components and wiring

18

▪ DS can only bind to services.
▪ How do I keep a service internal to a

component?

Use a service class or interface from a private package

Never block in @Activate

19

@Activate
public void activate(BundleContext context) {
executor.execute(() -> {

// Do some long running stuff
context.registerService(Servlet.class, this, new Hashtable<>());

});
}

Make blocking calls async and export service by hand.

20

Be careful with adaptTo()

What is adaptTo()

21

▪ By coincidence a name of some conference ☺
▪ Popular pattern in sling

Session session = resolver.adaptTo(Session.class);

Great pattern for simple cases but can have issues

Be careful with adaptTo()

22

▪ AdapterFactory services might not (yet) be present
▪ Some adaptions get OSGi services via registry
▪ Timing issues like to context.getService()

Replace adaptTo() by service references if possible

Be careful with adaptTo()

23

PageManager pageManager = resolver.adaptTo(PageManager.class);

null?
What now?

Service reference instead of adaptTo()

24

@Reference
private PageManagerFactory pageManagerFactory;
…

PageManager pageManager =
pageManagerFactory.getPageManager(resolver);

Always safe to use

25

Loose coupling and easy application assembly

Loose coupling vs application assembly

26

Loose Coupling
▪ Depend on interfaces not implementation
▪ Whiteboard pattern achieves even better decoupling

Assembly
▪ Determine list of bundles to install
▪ Should work with minimal definitions and resolver

Application is loosely coupled
but

not enough information to find the bundles
with service impls or whiteboards

HTTP Whiteboard

27

@Component(
service = Servlet.class,
property = "osgi.http.whiteboard.context.path=/ myservlet "

)
public class MyServlet extends HttpServlet {
…

}

▪ Achieves loose coupling
▪ Assembly of application difficult

New Http Whiteboard

28

@Component(service = Servlet.class)
@HttpWhiteboardServletPattern("/myservlet")
public class MyServlet extends HttpServlet {
…

}

New annotations: Easier configuration + requirements

Requirements & Capabilities drive assembly

29

Initial bundles /
requirementsRepository

List of bundles to
run

Assembly in practice

30

31

Questions?

Resources

32

▪ Follow me on Twitter @schneider_chris
▪ Demo project

▪ https://github.com/cschneider/osgi-best-practices

More links in the Demo project

https://twitter.com/schneider_chris
https://github.com/cschneider/osgi-best-practices

33

Backup

34

Everything you need to know about OSGi class
loading

OSGi class loading

35

Bundle A

Bundle B
Import pkgbpkga

A

pkgb
B

OSGi class loading

36

What happens when you do new B() in OSGi?
@Component
Class A {

@Activate
void loaderTest() {

ClassLoader clA = this.getClass().getClassLoader();
B b = new B();
ClassLoader clB = b.getClass().getClassLoader();

}
}

What is the
ClassLoader of
A and B and why?

OSGi class loading

37

▪ Manifest defines imported package and version ranges
▪ Resolve wires each imported package to a bundle providing

the package
▪ On loading a class these locations are checked

1. Bound imports
2. Contents of the bundle
3. bootstrap ClassLoader

OSGi class loading

38

Classloading is delegated to other bundle

So class B is loaded by ClassLoader of
BundleB

OSGi class loading

39

A Class is always loaded by the
ClassLoader of its own bundle

