
APACHE SLING & FRIENDS TECH MEETUP
2 - 4 SEPTEMBER 2019

From 0 to HERO in under 10 seconds
Radu Cotescu, Karl Pauls - Adobe

rev. 7.20190901

 2

Mr. Scripting

 3

▪ Computer Scientist @ Adobe, Basel,
Switzerland

▪ Member of the Apache Software
Foundation

▪ Apache Sling PMC member

▪ Maintainer of HTL for Apache Sling

▪ Initiator of the Apache Sling Validation
Framework

Mr. Classloader

 4

▪ Computer Scientist @ Adobe, Basel,
Switzerland

▪ Member of the Apache Software
Foundation

▪ Apache Sling and Apache Felix PMC
(VP) member

▪ Co-Author of OSGi in Action

 5

Apache Sling Scripting Reloaded[0]

 6

Wait, is this 2018 again?!?!

Core principles:

1. pack scripts into OSGi bundles

2. define the resource types as versioned capabilities, with
versioned requirements (Java APIs, other resource types to
which scripts delegate or which scripts extend)

3. allow the platform to do what it’s made to: wire things

 7

Apache Sling Scripting Bundle Tracker[1]

What:

1. add-on module to which bundles that provide scripts have to
be wired explicitly

2. reuses the already established mechanisms for registering
servlets in Apache Sling

3. allows building light-weight instances that can be thrown into
production with very little warm-up, when using precompiled
scripts

 8

Apache Sling Scripting Bundle Tracker[1]

4. provides the mechanism for deploying truly versionable
scripts, with explicit dependencies, by relying on the OSGi
framework

5. removes the need of a separate ScriptCache

6. removes additional pressure on the persistence layer

7. simplifies instance and application upgrades

8. Maven plugin for generating requirements and capabilities

 9

Apache Sling Scripting Bundle Tracker[1]

If there’s something cool from 2018

 10

 11

From 0 to HERO in under 10 seconds

And in 2019 the buzzwords are…

However, it’s 2019

 12

Microservices Cloud Native DevOps Stateless XaaS

A container should be:

✓immutable

✓reasonably lightweight, which implies

✓small disk footprint

✓small memory footprint

✓blazing fast start-up time

✓horizontally scalable (remember Kubernetes?), therefore
preferably stateless

 13

If Sling would be a Docker image […]

1. Sprinkle Apache Sling Feature Model to taste:

1. no configurations on disk

2. lightweight launcher (no caching of artifacts)

2. Mix a bit of jlink to create a custom JRE:

1. use jdeps to figure out the dependencies

2. try to avoid java.desktop, if possible

3. Base your image on alpine

[…] under 100 MB […]

 14

1. Use a customised Sling setup – minimum number of bundles

▪ JCR-less Sling (we know, it’s heresy) - the Resource Provider
API can be used to expose Resources from anywhere

https://xkcd.com/644/

[…] and completely stateless

 15

https://xkcd.com/644/

2. /content exposed through remote Resources

3. Precompiled component scripts served through bundles
(separation of concerns [1])

4. Immutable deployment

▪ Feature Model only

[…] and completely stateless

 16

/**
 * A {@code RemoteStorageProvider} is responsible for retrieving the {@link RemoteResourceReference}s
 * corresponding to a certain Sling path.
 */
@ProviderType
public interface RemoteStorageProvider {

 @Nullable
 RemoteResourceReference findResource(@NotNull String slingPath, @NotNull Map<String, Object> authenticationInfo);

 @Nullable
 File getFile(@NotNull RemoteResourceReference reference, @NotNull Map<String, Object> authenticationInfo);

 @Nullable
 Directory getDirectory(@NotNull RemoteResourceReference reference, @NotNull Map<String, Object> authenticationInfo);

}

RemoteStorageProvider API

 17

▪ Experimental! API to have different remote resources hooked
into Sling via ResourceProviders:

▪ 1:1 mapping between a ResourceProvider and a
RemoteStorageProvider

▪ Provides a Resource tree based on files and folders, with a
special .sling.json file for defining properties

▪ Includes an in-memory caching layer and event handling
(optional); should probably delegate this to Redis

RemoteStorageProvider API

 18

RemoteStorageProvider API

 19

Putting it all together

 20

 21

Demo*
*or how we can embarrass ourselves if things don’t work

✓ stateless Docker container

✓ 75 MB JCR-less Sling web application including the JRE

✓ less than 200 MB memory footprint

✓ less than 10 seconds elapsed before first rendering*

✓ 0 dynamically generated classes (no compilers)

* on a crazy expensive 2018 MacBook Pro ; good luck deploying servers so powerful in production!

So what was this demo about?

 22

OSGi RFP 196 [2]

▪ Provides a way to use an OSGi framework with custom
classloaders (a.k.a. OSGi Connect/PojoSR)

Graal/Substrate VM

▪ Ahead-of-Time (AOT) Java code compilation

Together with the precompiled bundled scripts it should be
possible to perform an AOT compilation of our Sling application
as a native image

Where do we go from here?

 23

 24

Q&A

[0] – https://adapt.to/2018/en/schedule/apache-sling-scripting-reloaded.html

[1] - https://github.com/apache/sling-org-apache-sling-scripting-bundle-tracker

[2] - https://github.com/osgi/design/blob/master/rfps/rfp-0196-OSGiConnect.pdf

Assets licensed from https://stock.adobe.com/

Our diagrams were designed with https://whimsical.co/flowcharts/

Code available after the talk at https://github.com/apache/sling-whiteboard/tree/master/it-is-cloudy-here

Resources

 25

https://adapt.to/2018/en/schedule/apache-sling-scripting-reloaded.html
https://github.com/apache/sling-org-apache-sling-scripting-bundle-tracker
https://github.com/osgi/design/blob/master/rfps/rfp-0196-OSGiConnect.pdf
https://stock.adobe.com/
https://whimsical.co/flowcharts/
https://github.com/apache/sling-whiteboard/tree/master/it-is-cloudy-here

