
APACHE SLING & FRIENDS TECH MEETUP
2 - 4 SEPTEMBER 2019

Deep-dive into cloud-native AEM deployments based on Kubernetes
Tomek Rękawek, Adobe

2

Cloud: what and why?

We want to move from

3

to

4

Cloud: why?

5

▪ Running AEM at scale
▪ Hassle-free deployments
▪ The cloud provider (AWS, Azure) should worry

about infrastructure

Agenda

6

▪ Jobs
▪ Content migration
▪ New indexes

▪ QA

▪ Docker & Kubernetes introduction
▪ Architecture overview
▪ Publish persistence

▪ Cloud Segment Store
▪ Golden publish
▪ Compaction

▪ Sidecar services

7

Docker & Kubernetes introduction

The power of standardization

8

Dockerized AEM

9

▪ AEM in Docker image
▪ Composite Node Store

▪ /apps & /libs stored in the container
▪ Actual content lives outside, in the VOLUME or MongoDB

▪ OSGi Feature Model
▪ Defines AEM and customer application
▪ Feature launcher starts it inside container
▪ Covered in Karl & David’s presentation

▪ See adaptTo() 2017 talk for more details

https://adapt.to/2019/en/schedule/the-sling-feature-model-1-0-revealed.html
https://adapt.to/2017/en/schedule/zero-downtime-deployments-for-the-sling-based-apps-using-docker.html

Mini intro to Kubernetes

10

▪ Launches Docker containers without worrying about the
underlying VMs

▪ Dictionary
▪ Pod – a group of containers starting together on a single machine
▪ Service – internal load balancer, exposing a number of pod replicas under

a single address
▪ Ingress – exposes a service under an public http address

▪ Every entity is represented by a YAML object in K8s API server
▪ The YAML is the desired state, K8s knows how to get there

Deployments with Helm

11

▪ Helm – K8s apps management
▪ Chart – a bunch of K8s YAML

descriptors, with a simple
templating

▪ Whole AEM deployment can be
installed/upgraded with a single
command

Image: https://helm.sh

12

Architecture overview

AEM Kubernetes setup

13

14

Publish persistence evolution

Problem definition

15

▪ Author persistence is easy-ish with MongoDB
▪ Publish is harder – local SegmentMK, no clustering
▪ The publish farm is kept up-to-date with replication
▪ However:

▪ we need to provide the new publish instances with a segment store,
▪ copy it from another instance.

▪ Problems:
▪ copying files between pods is hard and hacky,
▪ what if there’s no publish to copy from?

Cloud Segment Store

16

▪ A new plugin for the Segment
Node Store

▪ Nodes are stored in a cloud
storage service

▪ No tar files, raw segments
grouped in dirs

▪ Can be used in RW or RO modes

Golden publish

17

▪ A designated publish
instance

▪ Not connected to LB
▪ It maintains a “golden copy”

of the segment store
▪ New publish just clone it

Problem: duplicated binaries and startup time

18

Golden publish

Segment 1

Segment 2

Segment 4

Segment 3

Segment x

Publish 1

Segment 1

Segment 2

Segment 4

Segment 3

Segment y

Publish 2

Segment 1

Segment 2

Segment 4

Segment 3

Segment z

Publish 3 (starting)

Segment 1

Segment 2

Segment 3

Segment 4

▪ Multiple copies of the same segments 1-4 ($$$)
▪ Cloning a bucket takes time during the publish start (🕑🕑🕑)

Optimization: a single segment store

19

20

Publish persistence: compaction

Compaction

21

Out-of-band publish update

22

▪ This pattern will be useful in
many cases

▪ We may clone the publish
repository, modify it and re-
deploy instances on top of it

▪ Persisted message queue
will apply missing changes

23

Sidecar services

Sidecar approach

24

▪ A single pod can run many containers, sharing their
volumes and localhost interface

▪ We can use them for the auxiliary services (sidecars):
▪ Dispatcher in the publish pod
▪ Upload logs to Splunk
▪ Warmup service

AEM pod with sidecars

25Sidecar icon: Flaticons.com

26

Jobs

Kubernetes job

27

▪ Starts a pod
▪ Meant to perform a specific task and finish

▪ Unlike the deployment, which run indefinitely

▪ Will be restarted if fails
▪ Jobs provides a way to interact with the

deployed AEM

28

Content migration

Content migration

29

▪ How to migrate old content to K8s?
▪ Access problem

▪ old AEM envs shouldn’t have access to the K8s
(encapsulation)

▪ K8s shouldn’t be able to access old AEMs (they can
be installed anywhere)

▪ Solution: demilitarized zone

2-phase migration

30

▪ Phase 1
▪ The migrator tool (crx2oak-like jar)

is used to export old AEM content
into a cloud storage service

▪ Phase 2
▪ A Kubernetes job is used to apply

the migrated content on the cloud
instances

31

New indexes

Adding new index

32

▪ Indexes are tricky
▪ /oak:index is a part of the mutable content
▪ But index definitions belongs to the

application

▪ Only adding new indexes is supported
▪ When a new index is added in /oak:index, it’ll

have an extra useIfExists property referencing
immutable part /apps
▪ This bounds the index definition to the application

version and Docker image

▪ This /apps path have to be added as well

• /oak:index/my-new-index
• useIfExists: /apps/indexes@v3

• /apps/indexes
• v3: true

Mutable part

Immutable part

Mutable content: adding new index

33

▪ Indexing job should be run before the actual app
deployment

▪ The job will:
1. Look for the new index defs in /oak:index
2. Perform out of band indexing of the content
3. Save the new indexing content to the production

repository

▪ The useIfExists will make sure that the new index is
ignored, until the new image is installed

▪ When the new image is deployed, the /apps part will
be updated and the new index will be used

34

Other topics

Related topics

35

▪ Feature model usage in Docker (covered in David’s
and Karl’s talk)

▪ Replication (covered in Timothee’s talk)
▪ Monitoring with Prometheus and Grafana
▪ CI/CD pipeline
▪ Network policies
▪ …

https://adapt.to/2019/en/schedule/the-sling-feature-model-1-0-revealed.html
https://adapt.to/2019/en/schedule/sling-content-distribution-for-the-cloud.html

36

Thanks!

