
APACHE SLING & FRIENDS TECH MEETUP
10-12 SEPTEMBER 2018

Thread dumps demystified
Miroslav Smiljanic, Adobe

2

▪ In Adobe since 2011
▪ In Adobe Consulting since 2012
▪ Joined as AEM support engineer
▪ Before Adobe, 6 years of experience
▪ www.linkedin.com/in/miroslav-smiljanic

3

Why to bother with thread dumps

Motivation

4

▪ Solve concurrency problems
▪ Thread dumps reports deadlock
▪ Or with deeper analysis we can detect deadlock ourselves

▪ Detect processing bottlenecks
▪ There is no deadlock but RUNNABLE thread blocks other

threads
▪ Understand runtime profile of the application
▪ Improves your root cause analysis skills
▪ It is fun

Thread states

5

▪ https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

How to take thread dumps

6

▪ https://helpx.adobe.com/experience-manager/kb/TakeThreadDump.html
▪ Via OSGi console, /system/console/status-jstack-threaddump

▪ https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.ht
ml

https://helpx.adobe.com/experience-manager/kb/TakeThreadDump.html

7

Deadlock detected in thread dump

Easy case

8

▪ SLING-7004: Deadlock at startup in Commons
Scheduler
▪ https://issues.apache.org/jira/browse/SLING-

7004

▪ Thread dump detects deadlock
▪ Synchronization done with keyword

synchronized

Deadlock detected

9

10

Thread synchronized with java.util.concurrent

Thread synchronized with java.util.concurrent

11

▪ Classes that can be used for synchronization
▪ java.util.concurrent.Semaphore
▪ java.util.concurrent.locks.ReentrantLock
▪ java.util.concurrent.locks.ReentrantReadWriteLock.ReadLock
▪ java.util.concurrent.locks.ReentrantReadWriteLock.WriteLock

▪ "a framework for locking and waiting for conditions that are distinct
from built-in synchronization and monitors"

▪ If the Java VM flag -XX:+PrintConcurrentLocks is set then stack trace
shows list of synchronizers (concurrent locks) owned by specific thread

▪ The same effect when using jstack –l <pid>

CQ5 share nothing clustering

12

▪ Blocked thread

▪ Blocking thread

▪ Problem: slave node joined the cluster after tow days
▪ During synchronization maser blocked repository access for other threads

13

Demo

But …

14

▪ Locked synchronizers not detected!!
▪ That makes hard to analyze thread dumps

ReentrantReadWriteLock

15

▪ ReentrantReadWriteLock.ReadLock.lock()

▪ ReentrantReadWriteLock.WriteLock.lock()

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.ReadLock.html#lock--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.WriteLock.html#lock--

Two threads example

16

?

Known “issue”

17

▪ Locked synchronizers not detected when using
▪ java.util.concurrent.Semaphore
▪ java.util.concurrent.locks.ReentrantReadWriteLock.ReadLock

▪ The situation is the same when using 3rd party libraries
▪ For example the class that was used in Jackrabbit

▪ EDU.oswego.cs.dl.util.concurrent.WriterPreferenceReadWriteLock

▪ “Bug” has been reported
▪ https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6207928
▪ Fixed or “works as designed”?

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6207928

Blocking thread not detected

18

How to proceed?

19

▪ How to identify thread that owns the lock?
▪ Looking at the all threads blocked on the monitor do folowing
▪ Identify the class that is using java.util.concurent
▪ Remember the class, method and line number

▪ For example at org.examlpe.MyClass.method1(MyClass.java:100)

▪ Some threads can have different method from the same class
▪ For example at org.examlpe.MyClass.method2(MyClass.java:200)

▪ Locking thread candidates (thread that potentially owns the lock)
▪ Really good one: has the same class and method(s) in stack but greater line number
▪ Has the same class org.examlpe.MyClass but different method

One of the blocked threads

20

Blocking thread

21

▪ Replication process was blocking all other threads

L 204 > L 201

SegmentNodeStore.java

22

▪ 37 threads are waiting
to acquire the monitor

▪ POST /bin/receive
holds the lock

23

Demo

24

Long running thread

25

▪ If possible it is good to have more than one thread
▪ It gives possibility to discover long lasting threads
▪ From there it is possible to continue investigation by increasing logging

level for modules that appear in stack trace

26

Tools

Tools

27

▪ TDA – Thread Dump Analyzer
▪ https://github.com/irockel/tda

▪ IBM Thread and Monitor Dump Analyzer
▪ http://fastthread.io/index.jsp

https://github.com/irockel/tda
http://fastthread.io/index.jsp

Links

28

▪ http://javaeesupportpatterns.blogspot.com/p/thread-dump-analysis.html
▪ https://helpx.adobe.com/experience-manager/kb/thread-dump-

analysis.html
▪ https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/han

gloop002.html

https://helpx.adobe.com/experience-manager/kb/thread-dump-analysis.html
https://helpx.adobe.com/experience-manager/kb/thread-dump-analysis.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/hangloop002.html

