adaptTo()

10-12 SEPTEMBER 2018

SLING MEMORY DEEP DIVE
@ValentinOlteanu, @AdobeCH

Speaker notes

Physical memory is one of the most critical system resources, along
with CPU, that a Sling application relies on to achieve maximum
performance and best response times. It is commonly accepted that
sling applications perform the best when the whole state is in
memory and any disk/remote access introduces huge penalties,
thus Sling and Oak rely on a bunch of in-memory caches to deliver
the desired performance.

Understanding where and how this is used is a very important
know-how for operating large scale deployments, especially when
you need to address sizing, optimising and vertical scaling. This
session takes a holistic approach to understanding RAM
consumption by offering a detailed split-view of all the various
flavours of a system's memory used by Sling.

https://adapt.to/
https://twitter.com/ValentinOlteanu
https://twitter.com/adobeCH

Memory is a wide and generic subject on which one could speak for
days, depending on the perspective and the level of details that are
discussed. To scope the presentation and to have some practical
takeaways at the end, I'm focusing on a few questions I've often
received when talking about this. The questions are usually centred
around sizing:

* how much RAM do | need for my deployment?

* how do | configure the JVM to optimally distribute the available

memory?
a00
=.-: Answering these questions will not only ensure high performance,
mEe but also stability by avoiding crashing the java process and
adaptTo() potentially losing data.

M E M O RY how to avoid OOM?
AJONIIN

how much page cache?

MEMORY

how much heap?

how much RAM? MEMORY

https://adapt.to/

adaptTo()

Full system dissection

|

Speaker notes

To address the subject from a holistic perspective, I'm going to take
a top-down approach: first take a look at the overall system and
identify the biggest components and then zoom in each of them and
see how they break down further.

For illustrating the concepts with some real-world numbers, I've
used a typical AEM deployment for extracting the exact numbers.
The system was running in a Linux VM, with a default AEM
installation and some constant incoming traffic for keeping the
internals warmed up.

https://adapt.to/

For identifying which processes have pages committed in the
physical memory, I've extensively used standard linux tools, such as
‘ps’, pmap and the /proc/meminfo” virtual file. The exact
commands are gathered in a script at
https://github.com/volteanu/sling-memory-deep-
dive/blob/master/scripts/cqmeminfo.sh which you can download
and adapt for inspecting your own system.

Running the above script on my test system, which has 8GB of

2000 RAM, yielded the following consumers:
===: - Linux kernel and assisting processes (e.g. monitoring apps)
JEse occupy about 1GB of the physical memory

adaptTo() RAM = 8GB - AEM java process committed 4GB, which corresponds exactly to

the max heap size parameter (-Xmx) passed to the java command
- The page cache, managed by the linux kernel and intensively
used by AEM for optimising file access, especially for caching
segment tar files
- Linux kernel always keeps some free RAM at hand in case new

/p roc/meminfo [ACtive(fi |e)] processes are started and need to allocate some memory

Finding the right balance between heap and page cache is
necessary to operate the application at the highest performance
while keeping the cost under control. In this case, for the given load
and content size, allocating 4GB to the heap and leaving 2GB for
the page cache proved to be the right choice to have the application
running without running out of (heap) memory and with a sufficiently
big cache to ensure small response times.

java -Xmx4G cg-quickstart

monitoring (logstash) = SO0MB

kernel = 200MB" /proc/meminfo [Slab + KernelStack + PageTables]

https://adapt.to/

adaptTo()

Heap dissection

Speaker notes

The content of the heap can be easily inspected by taking a heap
dump of a running process (using for example “jhat’) and then
loading the generated file in a specialised program. For this
exercise, I've used the Eclipse Memory Analyser
(https://www.eclipse.org/mat/), which helped me identify the biggest
modules in my application from the heap footprint point of view.

https://adapt.to/

adaptTo()

Xmx = 4GB

link checker (72MB)

replication (3MB) felix service registry (2MB)

template cache (64MB)

datastore cache
(36MB)

sling servlet
resolver (3MB)

As mentioned before, the memory footprint for the heap was
precisely equal to the max heap parameter. This is expected, since
the JVM is always committing the maximum allocated amount of
memory and then manages it by itself. So, even if you're not always
using all the heap, the java process will keep all of it reserved in
case it's needed at some point.

The first thing to notice after taking the heap dump of live objects is
that the generated file size is smaller (sometimes much smaller)
than the total heap size. This is explained by the dynamic nature of
java memory management, which means a part of the heap is not
accessible and can be garbage-collected anytime.

After grouping the accessible objects into "components" (based on
the package), I've been able to identify the following, in descending
order by size:

- segment cache takes exactly 256MB (by design/configuration)

- deduplication cache - used by Online Revision Cleanup - takes
200MB (also by design)

- link checker has some sort of cache that keeps 72MB of objects
in this usecase

- template cache, also used by the Oak segment module, allocates
64MB

- Sling discovery holds a Json Factory reference that takes 42MB

- Datastore manages a cache of about 36MB

- Lucene requires about 32MB for index caching

- Other parts worth mentioning: replication, service registry and
sling servlet resolver are also present, but with smaller amounts
(around 2-3MB)

One important characteristic of these modules is how the memory
usage changes over time. There are two categories in which we
can split them:

1. Fixed size: usually size-bound caches, such as the segment
cache, deduplication caches

2. Variable size: basically all the components that allocate memory
proportionally to the number of concurrent requests handled by the
system. While some components are in my example quite small in
heap footprint, given the relatively low system load, they can quickly
grow and put a lot of stress on the heap if the concurrent traffic
increases.

The takeaway of this introspection should be: Sling and Oak require
a fixed, minimum amount of heap, on top of which a dynamic part
must to be allocated depending on the load. Also, custom bundles
will add some pressure, so don't forget to take them into
consideration when sizing your instance.

https://adapt.to/

adaptTo()

Page cache dissection

Speaker notes

Although not Sling or Oak specific, the Linux page cache is a critical
mechanism for ensuring a smoothly running application. Sling uses
it as a transparent cache for frequently used files, such as bundles
files, binaries etc. Out of these, the most frequently accessed files
are, by far, the tars used to store the node store. Because these
have a considerable size, and the application (JVM) doesn't have
any control on the cache, the system administrator needs to ensure
proper conditions for this cache to perform.

https://adapt.to/

>

adaptTo()

00:00

During normal operations

https://asciinema.org/a/200219

Speaker notes

To help understand how this cache is exercised, I've focused on the
segmentstore and tried to visualise which parts of the repository are
loaded into memory in a dynamic recording. For this, I've used
https://github.com/hoytech/vmtouch to list the resident pages of
each tar file at regular time intervals and create a time-lapse
animation.

vmtouch outputs, for each file, the number of resident pages out of
the total number of pages in the file. Besides it also illustrates the
exact area of the file that resides in memory, giving a nice overview
of which areas in the segmentstore are being cached at a certain
timestamp.

For better understanding the output, I've also colour-coded the tars,
depending on the (OnRC) generation: files with the same colour
belong to the same generation and there are usually two
generations in the segmentstore (old and current). Inside the same
generation, the files can be further split between tars generated by
the Online Revision Cleanup process (coloured background) and
tars generated by the application (coloured text).

During normal operations (that is during the day, when no
maintenance task is running and the system runs without
problems), the following is expected:

- the old generation is not loaded into memory; these files are not
used anymore since they are superseded by the newer generation
and will be deleted at the next revision cleanup

- from the current generation, there are files that are frequently
accessed so these are cached, but there will always be a part that
is not accessed; that can be linked to two causes:

1. there are newer revisions of the nodes, so some segments
holding the previous revisions are not accessible anymore, or

2. there's dormant content in the repository that is not accessed
by the application (e.g. versions, audit logs, disabled indices)

Over time, in normal conditions, the set of cached tars should be
quite stable, so the disk is not accessed frequently. Also, the set of
cached files is usually called the "working set" and is used for
properly sizing the RAM you should let available for the operating
system to be allocated for the page cache.

https://asciinema.org/a/200219
https://adapt.to/

Speaker notes

When pages are constantly evicted and then reloaded, the system
enters a state of "trashing": almost every request results in a disk
access, drastically impacting the overall performance. This is visible
in the animation, where many pages change the state from one
minute to the other. If that's the case for your system, you should
consider resizing your instance to bring it to a more stable state.

2 When "trashing”

adaptTo()

Files: 92

Directories: 0

Resident Pages: 374516/5085723 1G/19G 7.36%
Elapsed: 0.18069 seconds

» 00:00 "

https://asciinema.org/a/200570

https://asciinema.org/a/200570
https://adapt.to/

>

adaptTo()

00:00

During Online Revision Cleanup

https://asciinema.org/a/200223

Speaker notes

The Online Revision Cleanup (OnRC) is a special phase in which
this cache is going through an intensive refresh.
As noted above, before OnRC, the situation looks like this:

- generation n-1 (old) is not memory mapped since it's not
accessed anymore

- generation n (current) is partially loaded, defining the current
"working set"

When OnRC starts:

- generation n is fully traversed; this is visible in the animation as a
rolling loading/unloading of the tar files from this generation

- generation n+1 is created as a compact replica of generation n;
you will notice the fast creation of new files

- generation n-1 is safely deleted at the end

After OnRC:

- parts of generation n (which is now old) are still memory mapped
because they are accessed by long-running tasks in the application
that hold old references; as time passes, the tasks complete and
generation n is progressively evicted until no page from these tars
is present in memory

- generation n+1 becomes the current generation and is loaded
according to the usage; at the end we're reaching the same state as
before OnRC, completing the daily cycle

https://asciinema.org/a/200223
https://adapt.to/

Speaker notes

=22 How much?

adaptTo()

It depends!

e on your system load (traffic) e ON your content size (repository)
e On your working set

https://adapt.to/

adaptTo()

slides and goodies available at
https://github.com/volteanu/sling-memory-deep-dive/

https://github.com/volteanu/sling-memory-deep-dive/
https://adapt.to/

