
APACHE SLING & FRIENDS TECH MEETUP
10-12 SEPTEMBER 2018

SLING MEMORY DEEP DIVE

,

@ValentinOlteanu @AdobeCH

Physical memory is one of the most critical system resources, along
with CPU, that a Sling application relies on to achieve maximum
performance and best response times. It is commonly accepted that
sling applications perform the best when the whole state is in
memory and any disk/remote access introduces huge penalties,
thus Sling and Oak rely on a bunch of in-memory caches to deliver
the desired performance.
Understanding where and how this is used is a very important
know-how for operating large scale deployments, especially when
you need to address sizing, optimising and vertical scaling. This
session takes a holistic approach to understanding RAM
consumption by offering a detailed split-view of all the various
flavours of a system's memory used by Sling.

Speaker notes

1

https://adapt.to/
https://twitter.com/ValentinOlteanu
https://twitter.com/adobeCH

MEMORY

MEMORY
MEMORY

MEMORY

MEMORY

how much heap?

how much RAM?

how much page cache?

how to avoid OOM?

Memory is a wide and generic subject on which one could speak for
days, depending on the perspective and the level of details that are
discussed. To scope the presentation and to have some practical
takeaways at the end, I'm focusing on a few questions I've often
received when talking about this. The questions are usually centred
around sizing:
 * how much RAM do I need for my deployment?
 * how do I configure the JVM to optimally distribute the available
memory?

Answering these questions will not only ensure high performance,
but also stability by avoiding crashing the java process and
potentially losing data.

Speaker notes

2

https://adapt.to/

Full system dissection

To address the subject from a holistic perspective, I'm going to take
a top-down approach: first take a look at the overall system and
identify the biggest components and then zoom in each of them and
see how they break down further.
For illustrating the concepts with some real-world numbers, I've
used a typical AEM deployment for extracting the exact numbers.
The system was running in a Linux VM, with a default AEM
installation and some constant incoming traffic for keeping the
internals warmed up.

Speaker notes

3 . 1

https://adapt.to/

RAM = 8GB

kernel = 200MB /proc/meminfo [Slab + KernelStack + PageTables]

monitoring (logstash) = 800MB

heap = 4G java -Xmx4G cq-quickstart

page cache = 2GB /proc/meminfo [Active(file)]

For identifying which processes have pages committed in the
physical memory, I've extensively used standard linux tools, such as
`ps`, `pmap` and the `/proc/meminfo` virtual file. The exact
commands are gathered in a script at
https://github.com/volteanu/sling-memory-deep-
dive/blob/master/scripts/cqmeminfo.sh which you can download
and adapt for inspecting your own system.

Running the above script on my test system, which has 8GB of
RAM, yielded the following consumers:
 - Linux kernel and assisting processes (e.g. monitoring apps)
occupy about 1GB of the physical memory
 - AEM java process committed 4GB, which corresponds exactly to
the max heap size parameter (-Xmx) passed to the java command
 - The page cache, managed by the linux kernel and intensively
used by AEM for optimising file access, especially for caching
segment tar files
 - Linux kernel always keeps some free RAM at hand in case new
processes are started and need to allocate some memory

Finding the right balance between heap and page cache is
necessary to operate the application at the highest performance
while keeping the cost under control. In this case, for the given load
and content size, allocating 4GB to the heap and leaving 2GB for
the page cache proved to be the right choice to have the application
running without running out of (heap) memory and with a sufficiently
big cache to ensure small response times.

Speaker notes

3 . 2

https://adapt.to/

Heap dissection

The content of the heap can be easily inspected by taking a heap
dump of a running process (using for example `jhat`) and then
loading the generated file in a specialised program. For this
exercise, I've used the Eclipse Memory Analyser
(https://www.eclipse.org/mat/), which helped me identify the biggest
modules in my application from the heap footprint point of view.

Speaker notes

4 . 1

https://adapt.to/

Xmx = 4GB

segment cache
(256MB)

deduplication caches
(200MB)

template cache (64MB)

link checker (72MB)

sling discovery
(42MB)

datastore cache
(36MB)

lucene (23MB)

sling servlet
resolver (3MB)

replication (3MB)
felix service registry (2MB)

As mentioned before, the memory footprint for the heap was
precisely equal to the max heap parameter. This is expected, since
the JVM is always committing the maximum allocated amount of
memory and then manages it by itself. So, even if you're not always
using all the heap, the java process will keep all of it reserved in
case it's needed at some point.

The first thing to notice after taking the heap dump of live objects is
that the generated file size is smaller (sometimes much smaller)
than the total heap size. This is explained by the dynamic nature of
java memory management, which means a part of the heap is not
accessible and can be garbage-collected anytime.

After grouping the accessible objects into "components" (based on
the package), I've been able to identify the following, in descending
order by size:
 - segment cache takes exactly 256MB (by design/configuration)
 - deduplication cache - used by Online Revision Cleanup - takes
200MB (also by design)
 - link checker has some sort of cache that keeps 72MB of objects
in this usecase
 - template cache, also used by the Oak segment module, allocates
64MB
 - Sling discovery holds a Json Factory reference that takes 42MB
 - Datastore manages a cache of about 36MB
 - Lucene requires about 32MB for index caching
 - Other parts worth mentioning: replication, service registry and
sling servlet resolver are also present, but with smaller amounts
(around 2-3MB)

One important characteristic of these modules is how the memory
usage changes over time. There are two categories in which we
can split them:
 1. Fixed size: usually size-bound caches, such as the segment
cache, deduplication caches
 2. Variable size: basically all the components that allocate memory
proportionally to the number of concurrent requests handled by the
system. While some components are in my example quite small in
heap footprint, given the relatively low system load, they can quickly
grow and put a lot of stress on the heap if the concurrent traffic
increases.

The takeaway of this introspection should be: Sling and Oak require
a fixed, minimum amount of heap, on top of which a dynamic part
must to be allocated depending on the load. Also, custom bundles
will add some pressure, so don't forget to take them into
consideration when sizing your instance.

Speaker notes

4 . 2

https://adapt.to/

Page cache dissection

Although not Sling or Oak specific, the Linux page cache is a critical
mechanism for ensuring a smoothly running application. Sling uses
it as a transparent cache for frequently used files, such as bundles
files, binaries etc. Out of these, the most frequently accessed files
are, by far, the tars used to store the node store. Because these
have a considerable size, and the application (JVM) doesn't have
any control on the cache, the system administrator needs to ensure
proper conditions for this cache to perform.

Speaker notes

5 . 1

https://adapt.to/

data00110a.tar [] 0/67060 data00111a.tar [] 0/65818
data00112a.tar [] 0/65664 data00113a.tar [] 0/65632
data00114a.tar [] 0/65644 data00115a.tar [] 0/65621
data00116a.tar [] 0/65644 data00117a.tar [] 0/65641
data00118a.tar [] 0/65627 data00119a.tar [] 0/65636
data00120a.tar [] 0/65617 data00121a.tar [] 0/65661
data00122a.tar [] 0/65670 data00123a.tar [] 0/65683
data00124a.tar [] 0/65624 data00125a.tar [] 0/65678
data00126a.tar [] 0/65666 data00127a.tar [] 0/10094
data00128a.tar [] 0/72551 data00129a.tar [] 0/73475
data00130a.tar [] 0/73998 data00131a.tar [] 0/74250
data00132a.tar [] 0/74411 data00133a.tar [ooo] 32017/6725
data00134a.tar [oooOOOoooooooo] 27451/65750 data00135a.tar [oooooooooooooooo oooo] 5467/65749
data00136a.tar [] 0/65659 data00137a.tar [] 0/65668
data00138a.tar [] 0/65631 data00139a.tar [] 0/65630
data00140a.tar [] 0/65626 data00141a.tar [] 0/65627
data00142a.tar [] 0/65675 data00143a.tar [] 0/65693
data00144a.tar [] 0/65686 data00145a.tar [] 0/65607
data00146a.tar [] 0/65632 data00147a.tar [] 0/65679
data00148a.tar [] 0/65678 data00149a.tar [] 0/65650
data00150a.tar [ooo] 10832/30782 data00151a.tar [ooo] 43783/7261
data00152a.tar [oooooooooooooooooooooooooooooooooooo ooooooooooooooOOOOOO] 28372/73631 data00153a.tar [OO] 7134/7134

Files: 44
Directories: 0
Resident Pages: 155056/2798426 605M/10G 5.54%
Elapsed: 0.20993 seconds
vmtouch20180904124001.log

 00:00

https://asciinema.org/a/200219

During normal operations

To help understand how this cache is exercised, I've focused on the
segmentstore and tried to visualise which parts of the repository are
loaded into memory in a dynamic recording. For this, I've used
https://github.com/hoytech/vmtouch to list the resident pages of
each tar file at regular time intervals and create a time-lapse
animation.

vmtouch outputs, for each file, the number of resident pages out of
the total number of pages in the file. Besides it also illustrates the
exact area of the file that resides in memory, giving a nice overview
of which areas in the segmentstore are being cached at a certain
timestamp.

For better understanding the output, I've also colour-coded the tars,
depending on the (OnRC) generation: files with the same colour
belong to the same generation and there are usually two
generations in the segmentstore (old and current). Inside the same
generation, the files can be further split between tars generated by
the Online Revision Cleanup process (coloured background) and
tars generated by the application (coloured text).

During normal operations (that is during the day, when no
maintenance task is running and the system runs without
problems), the following is expected:
 - the old generation is not loaded into memory; these files are not
used anymore since they are superseded by the newer generation
and will be deleted at the next revision cleanup
 - from the current generation, there are files that are frequently
accessed so these are cached, but there will always be a part that
is not accessed; that can be linked to two causes:
 1. there are newer revisions of the nodes, so some segments
holding the previous revisions are not accessible anymore, or
 2. there's dormant content in the repository that is not accessed
by the application (e.g. versions, audit logs, disabled indices)

Over time, in normal conditions, the set of cached tars should be
quite stable, so the disk is not accessed frequently. Also, the set of
cached files is usually called the "working set" and is used for
properly sizing the RAM you should let available for the operating
system to be allocated for the page cache.

Speaker notes

5 . 2

https://asciinema.org/a/200219
https://adapt.to/

data00215a.tar [] 0/65678 data00216a.tar [] 0/65664
data00217a.tar [] 0/65665 data00218a.tar [] 0/65633
data00219a.tar [o o o] 50/65641 data00220a.tar [oo o o oo oooo] 310/20232
data00221a.tar [oooo ooooooo oooooooooo ooo o o ooooooooo ooooooooo oo] 2258/72413 data00222a.tar [oooooooooo o o oooooooooooooooo oooo o oooooooooooooo] 2246/73639
data00223a.tar [oo ooooooooooooooooooooooooooooooooooo ooooooooooooo] 3458/75229 data00224a.tar [oooooooooooooooooooooooooo oo oooooooo ooooooooooooo] 3657/75533
data00225a.tar [ooooooo ooooooooooooooooooooooo oo oooo ooooooooooo] 3438/75415 data00226a.tar [oooooo ooooo ooooooooooooooooooo ooooo oooooooooo oo] 3502/75616
data00227a.tar [ooo oooooo o] 3994/75761 data00228a.tar [ooooooooooooo oooooooooooooooooooooooooooooooooooooo] 3932/75807
data00229a.tar [oooooooooooooooo ooooooooooooooooooooooooooooooooooo] 4269/76005 data00230a.tar [oo] 4273/76172
data00231a.tar [ooo] 6434/77065 data00232a.tar [ooooooooooooooooooooooooooooooooooooo oooooooooooo] 4850/77467
data00233a.tar [oo] 5965/78624 data00234a.tar [ooo] 6215/80344
data00235a.tar [ooo] 7018/80864 data00236a.tar [ooo] 8051/81019
data00237a.tar [ooo] 7163/81083 data00238a.tar [ooo] 9422/81199
data00239a.tar [ooo] 8438/81139 data00240a.tar [ooo] 8595/73653
data00241a.tar [ooo oooooo] 8163/79338 data00242b.tar [oooooooooooooo oooooooooooooooooooooooooo o ooooo] 3135/24628
data00243b.tar [ooooooooooo ooooooooooooooooooooooooooooooooooooo] 2513/24232 data00244b.tar [ooooooooooooooooo o o oo oo o o ooo ooooooooo] 1186/8763
data00245b.tar [oooo oo oo o oooooooooooooooooo ooooo oo ooo] 1404/11502 data00246b.tar [o ooo o ooo ooooo oo ooooo ooooooo ooooo] 635/5469
data00247b.tar [ooo o oo ooooOo oo oOo ooo] 248/1621 data00248b.tar [o o ooo o oo ooooo oo oo ooOo] 357/2092
data00249b.tar [ooo oo o ooo ooo oOo oo oo] 269/1733 data00250b.tar [ooooo oooo oo ooo oo oo oOo oo] 255/1395
data00251b.tar [ooo oooooo o o o oooo oo] 240/2444 data00252b.tar [oo ooO o oo ooo oooo oo oOo] 211/1217
data00253b.tar [o ooOo o oOo ooOo oO] 165/1121 data00254b.tar [o ooo o oooo oo] 103/1159
data00255b.tar [o o oo oo oo o] 86/1338 data00256b.tar [o o oo o ooo ooo ooo] 192/2399
data00257b.tar [o oo oo oo oo o oo oo o] 173/1278 data00258b.tar [oo ooooo oo oo oo o oo ooooo ooo] 399/3029
data00259b.tar [o oooOooo oooo oo ooo] 186/1583 data00260b.tar [oOooo oo oOo o oOO ooo o] 147/800
data00261b.tar [ooooo oooo o ooo oo o ooooooooo ooo oooooooooo] 971/6647 data00262b.tar [ooo] 9429/26056
data00263a.tar [ooo] 25498/81232 data00264a.tar [ooo] 26860/8130
data00265a.tar [ooo] 28212/81381 data00266a.tar [ooo] 30877/8158
data00267a.tar [ooo] 33061/81560 data00268a.tar [ooo] 36317/8158
data00269a.tar [ooo] 40575/81602 data00270a.tar [oo ooo oooo oo ooooooooo ooooooooooooooo oo ooooooo] 1003/10181

Files: 92
Directories: 0
Resident Pages: 374516/5085723 1G/19G 7.36%
Elapsed: 0.18069 seconds
vmtouch20180908170401.log
 00:00

https://asciinema.org/a/200570

When "trashing"

When pages are constantly evicted and then reloaded, the system
enters a state of "trashing": almost every request results in a disk
access, drastically impacting the overall performance. This is visible
in the animation, where many pages change the state from one
minute to the other. If that's the case for your system, you should
consider resizing your instance to bring it to a more stable state.

Speaker notes

5 . 3

https://asciinema.org/a/200570
https://adapt.to/

data00110a.tar [] 0/67060 data00111a.tar [] 0/65818
data00112a.tar [] 0/65664 data00113a.tar [] 0/65632
data00114a.tar [] 0/65644 data00115a.tar [] 0/65621
data00116a.tar [] 0/65644 data00117a.tar [] 0/65641
data00118a.tar [] 0/65627 data00119a.tar [] 0/65636
data00120a.tar [] 0/65617 data00121a.tar [] 0/65661
data00122a.tar [] 0/65670 data00123a.tar [] 0/65683
data00124a.tar [] 0/65624 data00125a.tar [] 0/65678
data00126a.tar [] 0/65666 data00127a.tar [] 0/10094
data00128a.tar [] 0/72551 data00129a.tar [] 0/73475
data00130a.tar [] 0/73998 data00131a.tar [] 0/74250
data00132a.tar [] 0/74411 data00133a.tar [ooo] 31203/6725
data00134a.tar [ooo oooooooo] 24878/65750 data00135a.tar [oooo oooooooooooo oooo] 5401/65749
data00136a.tar [] 0/65659 data00137a.tar [] 0/65668
data00138a.tar [] 0/65631 data00139a.tar [] 0/65630
data00140a.tar [] 0/65626 data00141a.tar [] 0/65627
data00142a.tar [] 0/65675 data00143a.tar [] 0/65693
data00144a.tar [] 0/65686 data00145a.tar [] 0/65607
data00146a.tar [] 0/65632 data00147a.tar [] 0/65679
data00148a.tar [] 0/65678 data00149a.tar [] 0/65650
data00150a.tar [ooo] 10628/30782 data00151a.tar [ooo] 38282/7261
data00152a.tar [oo] 47735/73631 data00153a.tar [oo] 49598/7389
data00154a.tar [oo] 53330/74080 data00155a.tar [ooOOOOOO] 27408/6151

Files: 46
Directories: 0
Resident Pages: 288463/3000775 1G/11G 9.61%
Elapsed: 0.11611 seconds
vmtouch20180905012001.log

 00:00

https://asciinema.org/a/200223

During Online Revision Cleanup

The Online Revision Cleanup (OnRC) is a special phase in which
this cache is going through an intensive refresh.
As noted above, before OnRC, the situation looks like this:
 - generation n-1 (old) is not memory mapped since it's not
accessed anymore
 - generation n (current) is partially loaded, defining the current
"working set"

When OnRC starts:
 - generation n is fully traversed; this is visible in the animation as a
rolling loading/unloading of the tar files from this generation
 - generation n+1 is created as a compact replica of generation n;
you will notice the fast creation of new files
 - generation n-1 is safely deleted at the end

After OnRC:
 - parts of generation n (which is now old) are still memory mapped
because they are accessed by long-running tasks in the application
that hold old references; as time passes, the tasks complete and
generation n is progressively evicted until no page from these tars
is present in memory
 - generation n+1 becomes the current generation and is loaded
according to the usage; at the end we're reaching the same state as
before OnRC, completing the daily cycle

Speaker notes

5 . 4

https://asciinema.org/a/200223
https://adapt.to/

It depends!

Heap Page cache

on your system load (traffic) on your content size (repository)
on your working set

How much?

No notes on this slide.

Speaker notes

6

https://adapt.to/

slides and goodies available at
https://github.com/volteanu/sling-memory-deep-dive/

No notes on this slide.

Speaker notes

7

https://github.com/volteanu/sling-memory-deep-dive/
https://adapt.to/

