
APACHE SLING & FRIENDS TECH MEETUP

10-12 SEPTEMBER 2018

Migrating a large AEM project to Touch UI

António Ribeiro & Gregor Zurowski (Mercedes-Benz.io)

2

Introduction

About Us

3

GREGOR ZUROWSKI ANTÓNIO RIBEIRO

Germany Portugal

About Our Project

4

§ Global CMS for all Mercedes-Benz product sites

§ https://www.mercedes-benz.co.uk

§ https://www.mercedes-benz.de

§ https://www.mercedes-benz.pt

§ + 53 other countries by end of 2018

§ Project inception in 2014

§ Started on AEM 6.0

§ Currently running on AEM 6.3 and upgrading to 6.4 shortly

https://www.mercedes-benz.co.uk/
https://www.mercedes-benz.de/
https://www.mercedes-benz.pt/

5

Touch UI Migration

Touch UI Migration Scope

6

§ Started migrating to Touch UI in early 2018
§ Project scope

§ 80+ page components
§ 140+ components
§ 50+ AEM customizations

§ Custom widgets
§ Overlays
§ SiteAdmin/DAMAdmin/Sidekick extensions

§ Presentation scope: dialogs

How is Touch UI different? (1/2)

7

Touch UIClassic UI

How is Touch UI different? (2/2)

8

§ UI interfaces in AEM, including components and dialogs, are declaratively

described by nodes and properties

§ Similar structure with different node types and different wrapper nodes

Touch UIClassic UI

Classic UI Architecture (1/3)

9

§ UI components are only partly defined in the

repository

§ xtypes are defined in JavaScript sources

§ Client requests component definition as JSON

from server (“pull”)

§ Client is responsible for dynamically creating

UI components

Classic UI Architecture (2/3)

10

/component

/dialog

OK

textfield (xtype)

custom (xtype)

Client
Lib #1

Client
Lib #2

JCRExt Dialog
Nodes,

properties
& clientlibs

Classic UI Architecture (3/3)

11

:Browser :AEM :JCR
GET /dialog.json

read nodes

JSON

“pull”

render

Touch UI Architecture (1/3)

12

§ All Touch UI components defined in the

repository

§ Every component is a Sling resource

§ Client requests page with UI

§ Server sends UI as HTML documents using Coral

UI HTML5 web components (“push”)

§ “Dumb” client with fewer responsibilities

/libs/granite/ui

/textfield
/apps/daimler/ui

/custom

Touch UI Architecture (2/3)

13

/component

/cq:dialogtextfield (resourceType)

custom (resourceType)

JCRTouch UI Dialog
everything

is a
resource

Touch UI Architecture (3/3)

14

:Browser :AEM :JCR
GET /dialog.html resolve dialog

HTML

resolve components

render
“push”

Summary of Differences

15

Classic UI Touch UI
Dialog nodes § name: dialog

§ jcr:primaryType: cq:Dialog
§ name: cq:dialog
§ jcr:primaryType: nt:unstructured

Sling resources sling:resourceType not used sling:resourceType
cq/gui/components/authoring/dialog

JavaScript
location

Imperative parts are directly
embedded using listeners or
managed in clientlibs.

Imperative parts cannot be embedded
in dialog definition (separation of
responsibilities)

Event handling Dialog widgets directly reference JS
code

JS observes dialog events

Classic UI Event Handling

16

OK

textfield (xtype)

custom (xtype)

Ext Dialog

load

change

submit

<<listener>>

<<listener>>

embedded
JavaScript

<<listener>>

Touch UI Event Handling

17

(id=dialog1)

textfield (id=text1)

custom (id=custom1)

$(dialog1)
{…}

$(sub1)
{…}

.on(submit)

.on(ready)

$(text1)
{…}

.on(change)

event
observation

Touch UI Dialog Component ClientLib

Touch UI Event Handling Implementation (1/2)

18

§ Need to create hook-in points for observation

§ Uniquely identify components with granite:id

that translate into HTML ID attributes

§ Apply common behavior to a set of

components with granite:class that translate

into HTML class attributes

Touch UI Event Handling Implementation (2/2)

19

<coral-fileupload
id="touchui-dialog-imagetab-image"
class="coral-Form-field cq-FileUpload …"
name="./image/file" […]>
[…]

</coral-fileupload>

HTML

granite:class

granite:id

Validation (1/3)

20

§ Validation in Classic UI and Touch UI is purely
done on the client side

§ Classic UI vtypes can no longer be used
§ Touch UI provides form validation with

Granite UI foundation-validation

Validation (2/3)

21

<component1 … validation="uppercase">

Dialog

var registry = $(window).adaptTo('foundation-registry');

registry.register('foundation.validation.validator', {
selector: '[data-foundation-validation*=uppercase]',
validate: function (element) {

return checkUpperCase($(element));
}

});

JavaScript

Validation (3/3)

22

§ Possibility to simply combine multiple validations per
component in Touch UI

<textfield1 …
validation="uppercase,maxlength">

§ In Classic UI only one vtype per widget
<textfield2 …

vtype=”mycomponent-composite-validation">

§ Simple mandatory field validation using required
attribute, but issues with some components

<textfield3 …
required="{Boolean}true">

Custom Component Properties (1/2)

23

§ Components need additional properties that

are not available in the default configuration

§ Use granite:data properties that get

translated into HTML data attributes

§ Use case example:

§ Maximum number of allowed elements within a

multifield component

<multifield1 …
<granite:data

jcr:primaryType="nt:unstructured"
max-items="{Long}4"/>

</multifield1>

Custom Component Properties (2/2)

24

Dialog

<coral-multifield … data-max-items="4">
HTML

var maxItems = $multifield1.data('max-items');
JavaScript

Customizations

25

§ Two approaches for customizing UI components

§ Overlaying (“replacing”/ “hiding”)

§ Works in Classic UI and Touch UI

§ Place overlays in corresponding /apps component path taking

precedence over /libs

§ Be aware of “sustainable upgrades” introduced with AEM 6.4

§ Overriding (“inheriting”)

§ Classic UI: Widget inheritance using CQ.Ext.extend()

§ Touch UI: Sling Resource Merger using sling:resourceSuperType

§ Parent component remains as-is

§ Need to sync changes coming from newer versions and patches

Customization Example Using Overrides

26

Use case: Create multifield component using an alternative

persistence format based on the existing Granite multifield

component.

<<Component>>
granite/ui/multifield

render.jsp

<<Component>>
daimler/ui/multifield

render.jsp*

sling:
resourceSuperType

27

Touch UI Migration Approach

Migration Approach – User Interfaces

28

§ Both Classic UI and Touch UI interfaces coexist
§ Introduce changes in stages
§ Test migration before final switch over
§ Extending testing period without affecting users
§ No parallel integration branches

§ No painful branch tracking/merging
§ Allows multi-staged user training in our international

context

Migration Approach – Data Structures

29

§ Existing content data structure remains
untouched
§ No “big bang” data migration
§ Needs some extra tweaks to accommodate this

requirement
§ Example: multifield that supports “JSON” structure

Migration Approach – JavaScript Code

30

§ Touch UI and Classic UI JavaScript code co-exist
§ Manage each in separate clientlibs
§ Prevent colliding behavior

§ Classic UI code must not assume it’s running in Classic
exclusively

§ Potentially runs in Touch UI Classic dialog fallback mode
§ Add safe-guards in existing code to prevent from running in

wrong mode

31

Recommendations & Best Practices

Recommendations & Best Practices (1/2)

32

§ Start with conversion of simple component dialogs
§ Gradually convert more complex components

§ Event handling
§ Validations
§ Custom component-specific clientlibs

§ Convert dialogs with the AEM Dialog Conversion Tool
§ has limited functionality, but good to start with

Recommendations & Best Practices (2/2)

33

§ Avoid Coral 2 components (soon deprecated)
§ Coral 2: granite/ui/components/foundation/form/textfield
§ Coral 3: granite/ui/components/coral/foundation/form/textfield

§ Avoid deprecated Coral 3 components
§ Example: pathbrowser deprecated with AEM 6.3

§ Behavior of components can break with product updates
§ Example: customized assetdetails stopped working after AEM 6.3

SP2
§ Check release notes

Pain Points and Room for Improvement

34

§ Richtext (RTE) component with numerous problems
§ Validation not working as expected
§ Various rendering issues (fix in future releases)

§ Use of sling:hideResource causing inheritance locks to
disappear

§ Dialog layout problems
§ Example: Tooltips overflow dialog frames
§ unable to use workaround due to AEM “sustainable

upgrades”

35

Thank You.

References

36

§ Adobe Granite UI documentation:
https://adobe.ly/2QetbPf

§ Granite foundation-validation documentation:
https://adobe.ly/2Nrn5MR

§ Coral 3 component documentation:
https://adobe.ly/2McKlcI

§ Dialog Conversion Tool: https://adobe.ly/2O0M9HF
§ Sustainable upgrades: https://adobe.ly/2MZVFhO

https://adobe.ly/2QetbPf
https://adobe.ly/2Nrn5MR
https://adobe.ly/2McKlcI
https://adobe.ly/2O0M9HF
https://adobe.ly/2MZVFhO

Appendix 1: Touch UI Component Example (1/2)

37

<%
AttrBuilder attrs = tag.getAttrs();
cmp.populateCommonAttrs(attrs);
[...]
%>
<coral-fileupload <%= attrs.build() %>

[...]
</coral-fileupload>

render.jsp

Appendix 1: Touch UI Component Example (2/2)

38

<coral-fileupload
class="coral-Form-field cq-FileUpload …"
id="touchui-dialogimagetab-image"
name="./image/file"
data-foundation-validation="dd-image"
accept="image/jpeg,image/png"
action="/content/…/teaserelement_9c21” […]>
[…]

</coral-fileupload>

HTML

Appendix 2: Naming Conventions

39

Create naming conventions for Component IDs
§ Readable naming structure
§ Easily control JavaScript observation
§ Components must have unique IDs for component-specific behavior
§ IDs should contain common “parts” for applying shared behavior (as

an alternative to using granite:class).

touchui-<component-type>-<component-name>[-<…>]

§ Example: touchui-dialog-calltoaction-button
§ Apply notifications on touchui-dialog-*
§ Apply click event on touchui-*-calltoaction-button

Appendix 2: Naming Conventions Example

40

#touchui-dialog-video

#touchui-dialog-video-tab-general

#touchui-dialog-video-tab-general-
title

Video Dialog

General

textfield (xtype)

Dialog Definition Component IDs

