
APACHE SLING & FRIENDS TECH MEETUP
10-12 SEPTEMBER 2018

APACHE SLING & FRIENDS TECH MEETUP
10-12 SEPTEMBER 2018

Java9 and OSGi R7 with Apache Felix and Sling
Carsten Ziegeler, Karl Pauls – Adobe

2

Who are we?

Carsten Ziegeler

3

§ Principal Scientist @ Adobe

§ Member of the Apache

Software Foundation

§ PMC Member of Apache

Felix and Sling

§ OSGi Expert Groups and

Board member

Karl Pauls

4

§ Computer Scientist @ Adobe

§ Member of the Apache

Software Foundation

§ PMC Member of Apache

Felix and Sling (VP Apache

Felix)

§ Co-Author OSGi in Action

Outline

5

§ Java 9 support
§ Java 9 and OSGi R7
§ Apache Felix
§ Apache Sling
§ The Road ahead

§ What else is new in OSGi R7
§ OSGi R7 Highlights
§ OSGi R7 and beyond…

6

Java 9 support

JPMS – Java Platform Module System

7

§ Modularized JDK
§ 24 modules (e.g., logging, xml, desktop, rmi,…)
§ 6 modules deprecated for removal

§ java.activation, java.corba, java.transaction,
java.xml.bind, java.xml.ws, java.xml.annotation

§ Not available by default (needs –add-modules)
§ Deprecation of Unsave

JPMS – Java Platform Module System

8

§ Module system for jvm based applications
§ Modulepath along side classpath
§ Meta-data for exports, requires, and services (module-info.java)
§ Module level accessibility

§ Public no longer public (only public and exported and readable is accessible)
§ Includes reflection

§ No split packages
§ ModuleLayer for recursive use cases
§ Allows developers to build custom platforms based only on the

required modules (via jlink tool)

Multi-Release JAR

9

§ New type of JAR called multi-release JAR

§ Allows the JAR to support multiple major Java

versions

§ In a nutshell

§ Simple JAR with „Multi-Release: true“ in Manifest

§ Can provide version dependent resources in

META-INF/versions/N (for N>=9)
§ Highest matching versioned resource overrides

10

Java 9 and OSGi R7

Java imports

11

§ Until now, osgi.ee was used to define required Java

version

§ Modularized Java enables to build custom platforms

§ Includes java.* packages

§ Subsequently,

§ OSGi R7 now allows imports for java.*

§ osgi.ee should only be used for bytecode level

§ Java exports still only possible by the system bundle

§ Effectively, still bootdelegated

Multi-Release JAR files in OSGi

12

§ OSGi R7 adds support for multi-release JAR files

§ An OSGi bundle file can be a multi-release JAR

§ Bundle class path entries can be multi-release JAR files

§ R7 Framework supports supplemental manifest files

§ Supplement “Import-Package“ and “Require-

Capability“ for different versions

§ Via OSGI-INF/MANIFEST.MF in the versioned directories

e.g.:

META-INF/versions/9/OSGI-INF/MANIFEST.MF

Supporting R6

13

§ OSGi R6 prohibits bundles from importing java.*

§ Bundles that must work on OSGi R6 and

earlier should:

§ Not import the java.* packages in the main Manifest

§ Package the bundle as a multi-release JAR and import

java.* packages in supplemental manifests

§ R6 frameworks will ignore supplemental manifests

§ R7 frameworks will use them and they are only

relevant starting with java >= 9

14

Apache Felix

Runtime Discovery of JPMS packages

15

§ Starting with Felix 6.0.0 system package exports

are calculated dynamically on java >= 9

§ Optionally, uses constraints are calculated as well

§ Adds ~1 sec to first start-up time (results are cached)
§ Module list can be specified and only available

modules will be considered

§ Exported packages can be overridden on a per

module basis

Platform packages

16

§ Framework property:
felix.systempackages.calculate.uses=true
§ Turn on uses constraint calculation for system packages

§ Framework property:
felix.systempackages.substitution=true
§ Enable property substitution in

org.osgi.framework.system.packages
org.osgi.framework.system.packages.extra

§ ${felix.jpms.<module-name>} property added per detected
module containing exported packages (with leading comma)
§ Custom definitions via override through framework properties

Platform packages example

17

-Dfelix.jpms.java.sql=",javax.sql;version=\"0.0.0.9_JavaSE\";uses:=\"javax.transaction.xa\",javax.transaction.xa;version=\"1.1.0\"“

Override packages provided by java.sql:

Use only java.base and and java.sql (if it is there):

-Dorg.osgi.framework.system.packages="org.osgi.framework;version=\"1.9\"${felix.jpms.java.base}${felix.jpms.java.sql}“

Give packages for java < 9 and for JPMS based jdks:

-Dorg.osgi.framework.system.packages="org.osgi.framework;version=\"1.9\“

${sling.jre-${java.specification.version}}${sling.jre-${felix.detect.jpms}}

18

Apache Sling

JPMS packages via provisioning

19

§ Starting with launchpad.base 6.0.0 we can use the
provisioning model to specify available exports
§ Uses constraints calculation is on by default
§ Property substitution is on by default
§ Without any override of framework packages Felix defaults

are used (i.e., all available packages)
§ Sling 11 SNAPSHOT uses same set of exports for all

Java versions
§ Missing packages added via bundles

20

Demo

https://github.com/karlpauls/adaptto-r7

21

The Road ahead

Java 10,11,…

22

§ Java 10 essentially the same as Java 9
§ Apache Felix calculates osgi.ee dynamically

§ Java 11 removes deprecated modules
§ Most can be replaced by bundles or added to the

modulepath/image
§ Java LTS Releases: 11 and then every 3 years
§ Non-LTS Releases: 9, 10, 12...(every 6 months)
§ Java 12 might make all available modules loaded by

default (possibly this even happens for 11)
§ Source for LTS/Non-LTS: oracle.com

Tooling

23

§ Maven has no support for Multi-Release JAR
§ Workarounds possible

§ BND doesn‘t support Multi-Release JAR
§ https://github.com/bndtools/bnd/issues/2227

§ BND doesn‘t support java.* dependencies
§ https://github.com/bndtools/bnd/issues/2507

Summary and Outlook

24

§ True interoperability between JPMS and OSGi still not possible as

OSGi framework has to be on the classpath for now (and not on the

module classpath)

§ OSGi R7 improves using OSGi on JPMS

§ Runtime discovery of packages together with java.* imports allows

developers to build custom runtimes

§ Multi-release JAR supports provides path for R6 BC

§ Reflective access restrictions still a challenge for frameworks

§ Possibility to maybe create custom runtimes based on

provisioning/feature model in the future

25

What else is new in OSGi R7

OSGi R7 Highlights

26

§ Bundle Annotations
§ All manifest entries through annotations

§ Package Exports and Versioning
§ @Version, @ProviderType, @ConsumerType
§ @Export

Bundle Annotations

27

@Capability, @Requirement, @Header

@Requirement(namespace="osgi.implementation",
name="osgi.http",
version="1.1.0")

@Header(name=Constants.BUNDLE_CATEGORY,
value="adaptto")

Infer Requirements from Feature Usage

28

§ When using Declarative Services:

@Requirement(namespace = ExtenderNamespace.EXTENDER_NAMESPACE,
name = ComponentConstants.COMPONENT_CAPABILITY_NAME,
version = ComponentConstants.COMPONENT_SPECIFICATION_VERSION)

§ Infered by using DS annotations
@Component

Infer Requirements from Feature Usage

29

@RequireServiceComponentRuntime
public @interface Component {

...
}

@Requirement(namespace = ExtenderNamespace.EXTENDER_NAMESPACE,
name = ComponentConstants.COMPONENT_CAPABILITY_NAME,
version = ComponentConstants.COMPONENT_SPECIFICATION_VERSION)

public @interface RequireServiceComponentRuntime {

Declarative Services Highlights

30

§ Improved activation

§ Activation objects assigned to fields

§ Constructor injection

§ Component Property Type annotations

Declarative Services – Field Activation

Objects

31

@Activate
private MyConfiguration cfg;

@Activate
private BundleContext bundleContext;

Declarative Services – Constructor Injection

32

public GameServlet(@Reference GameController ref,
MyConfiguration myCfg) {

...
}

Component Property Type Annotations

33

§ Simplify Component Configuration

@ComponentPropertyType
public @interface ServiceDescription {

String value();
}

OSGi R7 Highlights - Basics

34

§ LogService
§ Logger interface similar to slf4j

§ Converter
§ Object conversion

§ Push Streams and Promises
§ Asynchronous programming model
§ Streams

Using the Converter

35

Converter c = Converters.standardConverter();

// Convert scalars
int i = c.convert("123").to(int.class);

UUID id=c.convert("067e6162-3b6f-4ae2-a171-2470b63dff00")
.to(UUID.class);

List<String> ls = Arrays.asList("978", "142", "-99");
short[] la = c.convert(ls).to(short[].class);

D

Convert into typed data

36

D

@interface MyAnnotation {
int refresh() default 500;
String temp() default "/tmp";

}

Map<String, String> myMap = new HashMap<>();
myMap.put("refresh", "750");
myMap.put("other", "hello");

MyAnnotation myAnn = c.convert(myMap).to(MyAnnotation.class);

int refresh = myAnn.refresh(); // 750
String temp = myAnn.temp(); // "/tmp"

OSGi R7 Highlights - Web

37

§ Http Whiteboard
§ Improvements (Global Filters)
§ Component Property Types

§ JAX-RS
§ A whiteboard model for JAX-RS

Http Whiteboard Annotations

38

@Component(service = Servlet.class)

@ServiceRanking(200)
@ServiceDescription("Best Servlet in the World")

@HttpWhiteboardServletPattern("/game")
@HttpWhiteboardContextSelect(

"(" + HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_NAME
+"=" + AppServletContext.NAME + ")")

public class GameServlet extends HttpServlet {

JAX-RS with DS

39

@Component(service = TestService.class)
@JaxrsResource
@Path("service")
public class TestService {

@Reference
private GameController game;

@GET @Produces("text/plain")
public String getHelloWorld() {

return "Hello World";
}

}

JAX-RS Support

40

§ Get, Post, Delete with Parameters
§ Application support
§ JAX-RS extension support (Filters,

Interceptors, etc)
§ Annotations for Declarative Services

D

OSGi R7 Highlights

41

§ Configurator and Configuration Admin
§ Configuration Resources
§ Improved factory configuration handling
§ Configuration Plugin improvements

Configuration Resource

42

configurations: {
"my.special.component" : {
"some_prop:Integer": 42,
"and_another": "some string"

},
"and.a.factory.cmp~foo" : {

...
}

}

OSGi R7 Highlights

43

§ Cluster Information
§ Support for using OSGi frameworks in clustered

environments.

§ Transaction Control
§ An OSGi model for transaction life cycle

management.

OSGi R7 and beyond...

44

§ Upcoming OSGi R7 Enterprise release

§ CDI - Context and Dependency Injection support OSGi

§ R8 Plans

§ App Packaging and Java 11 JPMS

§ Realtime OSGi

§ Industry 4.0

§ Microprofile I/O

45

Questions?

