
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 25-27 SEPTEMBER 2017

Robert Munteanu, Tomek Rękawek @ Adobe
0DT deployments for Sling-based apps

Agenda

● Motivation
● Concepts
● Usage
● Demo
● Wrap-up

Motivation

Clustered deployments

Standalone deployments

Concepts

Separate content from code

Oak Composite NodeStore

Oak Composite NodeStore

● Manages a number of 1 to n NodeStores
● Always has a global NodeStore, holding the content not

claimed by other NodeStores
● Multiple mounted NodeStores, owning content for certain

paths, for instance /libs and /apps

● Certain paths in the global mount can be claimed by mounts
– Looks for a :oak:mount- prefx in node names and matches them with mounts

– Currently implemented for indexes

Typical confguraton

Note: for your viewing pleasure, not an actual config file

/ <default> # global mount
/libs libs # read-only mount
/apps libs # read-only mount

Following paths also belong to the libs mount:
● /oak:index/uuid/:oak:mount-libs-index (and others)
● /jcr:system/rep:permissionStore/oak:mount-libs-
default

Oak composite store with Sling / AEM

● Two repositories:
– /apps & /libs - stored in a separate, read-only
repository-libs,

– other data - stored in the normal repository (Segment,
Mongo or RDB).

● The first one has to be created before starting
the instance.

Limitatons

● Mounts are always read-only
– Atomic state changes non trivial to get right, fast, scalable

– Write support requires additonal change to multple Oak subsystems

– No observaton events generated

● Referenceable nodes are not suported in non-default
NodeStores

● Versionable nodes are not supported in non-default
NodeStores

Ensuring consistency

● Mount-time checks
– No versionable nodes in non-default NodeStores

– No referenceable nodes in non-default NodeStoress

– No duplicate entries in unique indexes amongst all NodeStores

– Node type defnitons from mounts consistent with the global node type
registry

– Namespace usage in mounts consistent with the global namespace registry

● Run-time checks
– No cross-mount references may be created at run-tme

Applicaton-level changes

● No run-time changes under /libs or /apps
– Usually fne or applicatons

– More painful for testng

● Read-only status exposed via
Session.hasCapability, not
Session.hasPermission

Usage

Running instance in the composite mode

● We need to have two repositories in the composite mode:
– one for the applicaton (/apps and /libs),

– one for the content (everything else).

● When running the instance in the composite mode, the
application part is read-only
– so it's not possible to install the applicaton from the content packages, as usual.

● Therefore, using composite mode involves two-step process:
– start instance without the composite node store, to create the applicaton repository,

– start instance with the composite node store.

Building and startng composite instance

Building the composite-enabled instance

● First, the instance is started without the composite node store.
● The composite-init.jar waits until the instance is ready:

– start level 30,

– no indexing jobs in progress.

● Then it stops the instance.
● The created repository is renamed to repository-libs.

● It's a completely initialized repository:
– /apps, /libs will be used for the composite node store mount,

– other content will be used to pre-populate the default node store when running the instance.

Startng the quickstart in composite mode

● The instance is configured with two node stores: the default one and
the repository-libs.

● They are combined together with composite node store.

● If the instance is started for the first time:
– the default store is empty, so the composite node store pre-populates it with the content from

the repository-libs,

– it copies everything except the apps-related data,

– once the inital pre-populaton is done, the instance startup will carry on.

● If the instance references an existing default repository:
– the startup proceeds, with the new /apps and /libs part.

Customer applicaton integraton

● The customer application can't be installed in the instance runtime.
● It has to be integrated with the Sling/AEM code.
● Sling Provisioning Model:

[artifacts startLevel=20]
 com.acme.site/com.acme.site.content/1.0.0/zip

 com.acme.site/com.acme.site.core/1.0.0
 com.acme.site/com.acme.site.email/1.0.0
 com.acme.site/com.acme.site.templating/1.0.0

[configurations]
 com.acme.site.core.AcmeService
 enabled=B"true"
 path="/home/acme"

https://sling.apache.org/documentation/development/slingstart.html

Composite mode with Docker

● This 2-stage process needs to be automated.
● Docker is a perfect tool for the task - it allows to

encapsulate both logic and data:
– Dockerfile can be used to orchestrate the required steps,

– the created Docker image embedds the artfacts and
repository-libs.

● A separate image for author and publish.

Dockerizing the composite instance

Running the container

● The container uses an external storage for the
non-application content.

● Either VOLUME for the TarMK or a Mongo
instance.

● The /apps and /libs are served from the
embedded repository-libs.

Docker setup summary

Deployment scenarios

Blue-green deployments

Blue green deployments

● Now we have the whole application code enclosed in the container.
● While the other data (/content) is stored externally.
● This allows to perform a blue-green deployment.
● Blue container is the one running the older version of code.
● Without disabling it, we're creating a green container, running the newer code.
● They are both using the same content, but their /apps subtrees and bundles

are different.
● Now we can switch the load balancer to point the green container.
● The blue one can be shut down.

Incompatble content changes

● The assumption is that the green container doesn't introduce incomatible
changes.

● Otherwise the blue may break.
● In AEM context: eg. no new components should be added if the older version

doesn't support them.
● If the property name changes, the new version should fallback to reading the

older name as well.
● If the content schema changes, a script may be used to update the content

after switching the load balancer,
– the new applicaton should allow to read the older schema too.

Demo

Zero downtme demo

● Start a Dockerized, Mongo-based AEM instance with
application v1.

● Start the second container, with application v2,
connecting to the same MongoDB.

● Confirm it contains a new "video" component.
● Switch the load balancer.
● Destroy the old instance.

Wrap-up

Resources

● https://jackrabbit.apache.org/oak/docs/node
store/compositens.html

https://jackrabbit.apache.org/oak/docs/nodestore/compositens.html
https://jackrabbit.apache.org/oak/docs/nodestore/compositens.html

	Slide 1
	263d6b15850e410781dc9775b6d504b6
	99e8509149334a7895f9c1d3ec6f0852
	676c4524232f433f85b7a2b4256ca763
	4ee6ee1e702145f0b8e679e8f9669d09
	5c0f49b34fb1440ca89c3abbf4321ec4
	b0a14027c6a04af4974be46cf56a83af
	e6dd75c9b73f4cba819228ab7f11893a
	9a74fedc86554500a440efd1b7888e41
	43a7551c70c143799de00addd97ec316
	e9c468a5c5214e5ab53d56348acdc33d
	21a4d518e8e24ef098a5592b8ca04f07
	d321fcff8fda418b8acd6b97d462ade4
	3482183b04904b1986972b82c8b8f028
	8c47dc080e6c47df9ead84995847bebf
	f2ac554b24e94d06913ca98346ca8bc3
	6567bf0abef640ab9ec99eca7afc1a41
	9f95be3056c14cff9b559d0bede63a3f
	d4316f88b5744c3284d7eb002e48e891
	bbc070364c42461588b7d8786cea75ef
	f46eb50d64e94133a4f5695c7f774d0f
	fff34a8202d143749f514930ef23f110
	694b5d41b9ef42a88dae57953b84cd79
	e2a9571921534bfeb7fe7751c2bda92b
	d882db5161db4f389120eb6daedc6822
	d06ccec29d144de69968bf84ac17616c
	a1b1cc4965924f3bacdf610924a22fa0
	dbb0a4e043ce4cad9d750ff2f28c72d9
	b97ac09e04aa41f3805074995e98200c
	44524b0e0dae46debcdbb0a30394bee7
	1e6699ba62884151bdde68f7f6cbf692
	26fd1b392bf74905879495ff1f07c034

