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Motivation



Clustered deployments



Standalone deployments



Concepts



Separate content from code



Oak Composite NodeStore



Oak Composite NodeStore

● Manages a number of 1 to n NodeStores
● Always has a global NodeStore, holding the content not 

claimed by other NodeStores
● Multiple mounted NodeStores, owning content for certain 

paths, for instance /libs and /apps

● Certain paths in the global mount can be claimed by mounts
– Looks for a :oak:mount- prefx in node names and matches them with mounts

– Currently implemented for indexes



Typical confguraton

Note: for your viewing pleasure, not an actual config file

/       <default> # global mount
/libs   libs      # read-only mount
/apps   libs      # read-only mount

Following paths also belong to the libs mount:
● /oak:index/uuid/:oak:mount-libs-index ( and others )
● /jcr:system/rep:permissionStore/oak:mount-libs-
default



Oak composite store with Sling / AEM

● Two repositories:
– /apps & /libs - stored in a separate, read-only 
repository-libs,

– other data - stored in the normal repository (Segment, 
Mongo or RDB).

● The first one has to be created before starting 
the instance.



Limitatons

● Mounts are always read-only
– Atomic state changes non trivial to get right, fast, scalable

– Write support requires additonal change to multple Oak subsystems

– No observaton events generated

● Referenceable nodes are not suported in non-default 
NodeStores

● Versionable nodes are not supported in non-default 
NodeStores



Ensuring consistency

● Mount-time checks
– No versionable nodes in non-default NodeStores

– No referenceable nodes in non-default NodeStoress

– No duplicate entries in unique indexes amongst all NodeStores

– Node type defnitons from mounts consistent with the global node type 
registry

– Namespace usage in mounts consistent with the global namespace registry

● Run-time checks
– No cross-mount references may be created at run-tme



Applicaton-level changes

● No run-time changes under /libs or /apps
– Usually fne or applicatons

– More painful for testng

● Read-only status exposed via 
Session.hasCapability, not 
Session.hasPermission



Usage



Running instance in the composite mode

● We need to have two repositories in the composite mode:
– one for the applicaton (/apps and /libs),

– one for the content (everything else).

● When running the instance in the composite mode, the 
application part is read-only
– so it's not possible to install the applicaton from the content packages, as usual.

● Therefore, using composite mode involves two-step process:
– start instance without the composite node store, to create the applicaton repository,

– start instance with the composite node store.



Building and startng composite instance



Building the composite-enabled instance

● First, the instance is started without the composite node store.
● The composite-init.jar waits until the instance is ready:

– start level 30,

– no indexing jobs in progress.

● Then it stops the instance.
● The created repository is renamed to repository-libs.

● It's a completely initialized repository:
– /apps, /libs will be used for the composite node store mount,

– other content will be used to pre-populate the default node store when running the instance.



Startng the quickstart in composite mode

● The instance is configured with two node stores: the default one and 
the repository-libs.

● They are combined together with composite node store.

● If the instance is started for the first time:
– the default store is empty, so the composite node store pre-populates it with the content from 

the repository-libs,

– it copies everything except the apps-related data,

– once the inital pre-populaton is done, the instance startup will carry on.

● If the instance references an existing default repository:
– the startup proceeds, with the new /apps and /libs part.



Customer applicaton integraton

● The customer application can't be installed in the instance runtime.
● It has to be integrated with the Sling/AEM code.
● Sling Provisioning Model:

[artifacts startLevel=20]
  com.acme.site/com.acme.site.content/1.0.0/zip

  com.acme.site/com.acme.site.core/1.0.0
  com.acme.site/com.acme.site.email/1.0.0
  com.acme.site/com.acme.site.templating/1.0.0

[configurations]
  com.acme.site.core.AcmeService
    enabled=B"true"
    path="/home/acme"

https://sling.apache.org/documentation/development/slingstart.html


Composite mode with Docker

● This 2-stage process needs to be automated.
● Docker is a perfect tool for the task - it allows to 

encapsulate both logic and data:
– Dockerfile can be used to orchestrate the required steps,

– the created Docker image embedds the artfacts and 
repository-libs.

● A separate image for author and publish.



Dockerizing the composite instance



Running the container

● The container uses an external storage for the 
non-application content.

● Either VOLUME for the TarMK or a Mongo 
instance.

● The /apps and /libs are served from the 
embedded repository-libs.



Docker setup summary



Deployment scenarios



Blue-green deployments



Blue green deployments

● Now we have the whole application code enclosed in the container.
● While the other data (/content) is stored externally.
● This allows to perform a blue-green deployment.
● Blue container is the one running the older version of code.
● Without disabling it, we're creating a green container, running the newer code.
● They are both using the same content, but their /apps subtrees and bundles 

are different.
● Now we can switch the load balancer to point the green container.
● The blue one can be shut down.



Incompatble content changes

● The assumption is that the green container doesn't introduce incomatible 
changes.

● Otherwise the blue may break.
● In AEM context: eg. no new components should be added if the older version 

doesn't support them.
● If the property name changes, the new version should fallback to reading the 

older name as well.
● If the content schema changes, a script may be used to update the content 

after switching the load balancer,
– the new applicaton should allow to read the older schema too.



Demo



Zero downtme demo

● Start a Dockerized, Mongo-based AEM instance with 
application v1.

● Start the second container, with application v2, 
connecting to the same MongoDB.

● Confirm it contains a new "video" component.
● Switch the load balancer.
● Destroy the old instance.



Wrap-up



Resources

● https://jackrabbit.apache.org/oak/docs/node
store/compositens.html

https://jackrabbit.apache.org/oak/docs/nodestore/compositens.html
https://jackrabbit.apache.org/oak/docs/nodestore/compositens.html
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