
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 25-27 SEPTEMBER 2017

Sling Deployment Revisited
Dominik Süß, Adobe

Karl Pauls, Adobe

Where is the Problem?

2

SLING & AEM DEPLOYMENTS TODAY
§ Patchwork of Mechanisms
§ Not deterministic
§ Error Prone (human factor)

§ Inefficient

Painful to support & debug
when failing!!!

Patchwork of Mechanisms

3

§ OSGi Installer
§ FS Installer
§ JCR Installer
§ Launchpad / quickstart
§ PackageTransformer
§ Config Installer

§ Webconsole
§ Package Manager (AEM)

§ Varying behavior
§ Esp. Package vs Bundle

§ Massive interaction
§ Parallel activity

Not deterministic

4

§ Stateful
§ Race conditions by ambiguous

dependencies
§ Undefined Endstate
§ Unverifiable Outcome

! ! ! ! !
Deployment only declares changes

not the full target state

Error Prone

5

§ Manual dependency declaration for
packages

§ Filter changes can easily cause left-
overs

§ Instance state alters install sequence
of deplyoment units (pre-satisfied dependencies)

§ Altering sequence prevents reliable
testing

Inefficient

6

§ Unoptimized Instruction Flow
§ Retry until success
§ Rewiring of OSGi Bundles

(Config & DS)
§ Roundtrips through nested

deployment units

The Challenge

7

Backward Compatible Evolution
instead of

Revolutionary Experience Change

8

Vision

Deterministic Deployments

• No more race conditions
• Predictable
• Reproducable
• No more state handling

Prepared Deployments • Reduce install startup times
• Precalculate &	identify failures ahead of deployment

Conflictless Deliveries • Validated consistency ahead of deployment
• Reduce human	effort to declare dependencies

Composed Instances
• Reduce to ONEmechanism (install,	patching,	upgrades,	

configuration)
• Model	reflecting layering of instance (Vendor,	Integrator,	Operator)

Deterministic Deployments

• No more race conditions
• Predictable
• Reproducable
• No more state handling

Prepared Deployments • Reduce install startup times
• Precalculate &	identify failures ahead of deployment

Conflictless Deliveries • Validated consistency ahead of deployment
• Reduce human	effort to declare dependencies

High Level Goals

9

Deterministic Deployments

• No more race conditions
• Predictable
• Reproducable
• No more state handling

Prepared Deployments • Reduce install startup times
• Precalculate &	identify failures ahead of deployment

Deterministic Deployments

• No more race conditions
• Predictable
• Reproducable
• No more state handling

Deterministic Deployments

10

• Complete Dependency Tree
• Close gap between Appcontent & Java

• Full application state in feature model
• Rebuild application state each time

/libs &	/apps

/content (...)

launchpad

/content (...)

/libs &	/apps

/content (...)

launchpad

Step 0	(Source) Step 1	(Reset) Step 2	(Deploy)

Model	v1 Model	v2

Prepared Deployments

11

• Precalculate installation sequence
• No more observation during startup
• (optional) preprocess steps

Deployment
ManagerPrepare (1)

Feature	Launcher

Restart (2)Feature	Model

Launchpad

Instance

Launchpad

Prebuilt

Execution Plan

1 32

Prepared

Repo

Swap	(3)

Deploy (4)

Optimizing Installation

Conflictless Deliveries

12

• Validation of feature model
• Improved dependency metadata in vlt
• Validation of deployment unitsFeature	1

A1

Feature	2

Feature	3 Feature	4

A2

B C

A1 A2OR

Application Bundle	X
Exported Package:	
org.adaptto.test 1.0.0

Package	Y
Content-Package-Type:	Application
Depends:	Package	Z
Import-Package:	org.adaptto.test
[1.0.0,2.0.0)

Package	Z

content-package:analyze

content-package:package

13

• Unified descriptor of target state
• Layered composition of instance
• Delivery Containers

Product SP1 SP2
App	1

App	2

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5

Composed Instances

Isolated changes in ops experience:

§ Application composition (prepare deployment) replaces
coordinated installation sequence

§ All installation steps are reversible (just remove model)

§ Unify install & configuration experiences (eliminate variations)

The Experience

14

https://xkcd.com/927/

What do we do?

Sling Features*
• Well defined provisioning model with named and versioned features
• Requirement/Capability based as well as include based dependencies
• Resolver based composition and extensible analysis framework
• Sling focused launcher for immutable deployments

*	Name:	
TBD

Introducing Features

User	Feature

Extends

Requires

Resolver

Feature	Model Application	Builder Feature	Analyzer

Application

Feature	Launcher

User	Input

Feature	Repository

High level flow

Feature Model

{
"id" : "org.apache.sling/my.app/1.0",
"includes" : [{

"id" : "org.apache.sling/sling/9",
"removals" : {

"configurations" : [],
"bundles": [],
"framework-properties" : [] }}],

"requirements" : [{
"namespace" : "osgi.contract",
"directives" : {"filter" :

"(&(osgi.contract=JavaServlet(version=3.1))"}}],
"capabilities" : [{

"namespace" : "osgi.implementation",
"attributes" : {

"osgi.implementation" : "osgi.http",
"version:Version" : "1.1"}}],

"bundles" : {
"1" : [

"org.apache.sling/security-server/2.2.0",
"org.apache.sling/application-bundle/2.0.0",
"org.apache.sling/another-bundle/2.1.0"],

"2" : [
"org.apache.sling/foo-xyz/1.2.3"]},

"configurations" {
"my.pid" {

"foo" : 5,
"bar" : "test",
"number:Integer" : 7

},
"my.factory.pid~name" {

"a.value" : "yeah"
}},

"repoinit:Text|true" : "...",
"content-packages:ARTIFACTS|false" :[...]}

Feature Launcher

19

DEMO	TIME

What is already done?

20

§ Feature Model Draft
§ https://svn.apache.org/repos/asf/sling/whiteboard/cziegeler/feature/readme.md

§ Vault Metadata Extensions
§ Vault Improvements
§ Maven tooling for content-package (ASF contribution)

§ Feature Launcher Prototype

What YOU can do!

21

§ Hackathon: Play around and provide feedback!
§ https://github.com/DominikSuess/adaptto2017-demo

§ Ideas:
§ Get continuous deployments running with feature launcher
§ Reset application state using federate repo (0DT	POC)
§ Work	on	Deployment Manager
§ Introduce precalculation (OSGi &	Packages)
§ Check	out	content-package &	tooling improvements

22

HAPPY HACKING

