
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 25-27 SEPTEMBER 2017

How to write clean & testable code without
losing your mind - Andreas Czakaj

How did you learn what you know today?

2

“There are three kinds of men:
1. The one that learns by reading.
2. The few who learn by observation.
3. The rest of them have to p**

on the electric fence for themselves.”
-- Will Rogers

Source: brainyquote.com

this is us
learning AEM…

https://www.brainyquote.com/quotes/quotes/w/willrogers393513.html

Our early experience with AEM

3

▪ Painful upgrades
▪ Slow progress
▪ Hard to change code
▪ Hard to fix bugs
▪ Regression bugs

Image: „03-15: At the Dentist“, jlk.1, CC BY-SA 2.0

https://www.flickr.com/photos/joseph_k/6998959535/
https://www.flickr.com/photos/joseph_k/6998959535/
https://creativecommons.org/licenses/by-sa/2.0/

Our early AEM code

4

▪ Low coverage
▪ Expensive tests
▪ Slow & fragile tests
▪ Extensive logging
▪ High coupling
▪ Low cohesion

Edvard Munch, “The Scream”, https://en.wikipedia.org/wiki/The_Scream

https://en.wikipedia.org/wiki/The_Scream

What we actually wanted

5

▪ If you need to maintain, extend and adapt
over several years you’ll want…
▪ reliable software
▪ confidence in code
▪ understanding
▪ control
▪ adaptability, extensibility

How we actually wanted to work

6

▪ If you need to maintain, extend and adapt
over several years you’ll need…
▪ regression tests
▪ high coverage
▪ knowledge management
▪ control over dependencies
▪ high cohesion + low coupling

7

Refuse, Resist

Test Driven/First Development

8

▪ In 2005 I was a freelancer working on a
project using Servlets & JSPs, Hibernate &
JPA, SOAP etc.

▪ They forced me to do TDD
▪ After some weeks of futile protest…
▪ … I realized how TDD works & why it’s great

What IS great about TDD?

9

▪ Fewer bugs (duh!)
▪ Permanently up-to-date documentation
▪ You work faster (fast response, no maven)
▪ You have a tool to check your

design decisions
▪ … in a straightforward way

Test Driven Development

10

▪ If it’s hard to test it’s likely poorly designed
▪ Focus on creating testable code
▪ For your design decisions you should ask:

▪ what makes the code more testable?
▪ which of my options yields more testable code?

Test First Development

11

▪ Write the test first
▪ Write prod. code
▪ Run test
▪ Refactoring
▪ ~ Double-Entry

Accounting

Account

Furniture

Cash

Test

assertEquals(

6, fac(3)

);

Prod. Code

int fac(int n) {

return n > 1

? n * fac(n-1)

: 1;

}

Debit

€ 1,500

Credit

€ 1,500

Refactor production code, keep existing tests

12

Test

assertEquals(

6, fac(3)

);

Prod. Code

int fac(final int n) {

int out = 1;

for (int i = n; i > 1; i--) {

out *= i;

}

return out;

}

As a result…

13

▪ fewer bugs -> reliable software
▪ high coverage -> control, confidence in code
▪ tests as documentation -> understanding
▪ refactoring -> adaptability, extensibility
▪ -> That’s what we were looking for, right?
▪ -> I’ll tell my AEM developers about it!

However, the team was not impressed

14

Your boss telling you to
“get 100% coverage”
does not work…
… especially, when you
have to deal with code
like this:…

Image: Wikipedia, License: Public Domain

https://en.wikipedia.org/wiki/McKayla_Maroney#/media/File:Barack_Obama_with_artistic_gymnastic_McKayla_Maroney_2.jpg

How do you test THIS?

15

public void onEvent(final EventIterator events) {

while (events.hasNext()) {

final Event event = events.nextEvent();

Session session = null; Node node = null;

try {

String path = event.getPath();

if (path.endsWith(JcrConstants.JCR_CONTENT)) {

session = repository.login(new Credentials(){/*…*/}));

node = session.getNode(path);

if (node.hasProperty("cq:template") &&

“…".equals(node.getProperty("cq:template").getString())){

processExport(node);

}}

} catch (RepositoryException e) {/*…*/} finally{/*logout*/}}}

Team: “Isn’t it obvious?”

16

▪ “We already tried everything™”…
▪ mocks
▪ end-to-end tests
▪ in-container tests

▪ “We can reach some coverage…”
▪ “…but, obviously, it will be

a lot of tedious work and pretty expensive”

Team decision

17

▪ “You can’t test
everything in AEM
without losing your
mind”

Source: pixabay, License: CC0 Creative Commons

https://pixabay.com/de/rotk%C3%A4ppchen-m%C3%A4rchen-wald-m%C3%A4dchen-2197756/

No need to lose your mind

18

▪ TDD is NOT about
testing cleverly

▪ TDD is about
writing code in a
different way:
clever == testable

Sigmund Freud, https://de.wikipedia.org/wiki/Datei:Sigmund_Freud_LIFE.jpg

https://de.wikipedia.org/wiki/Datei:Sigmund_Freud_LIFE.jpg

Digging into the problem - together

19

▪ We spent some time
figuring out new
design approaches

▪ Here’s what we
found out
really works…

Image: “Digging the Drain” by International Disaster Volunteers, License: CC BY 2.0

https://www.flickr.com/photos/edvolunteers/4999501574/
https://www.flickr.com/photos/edvolunteers/4999501574/
https://creativecommons.org/licenses/by/2.0/

20

Some AEM Examples

Busy, busy method

21

public void onEvent(final EventIterator events) {

while (events.hasNext()) {

final Event event = events.nextEvent();

Session session = null; Node node = null;

try {

String path = event.getPath();

if (path.endsWith(JcrConstants.JCR_CONTENT)) {

session = repository.login(new Credentials(){/*…*/}));

node = session.getNode(path);

if (node.hasProperty("cq:template") &&

“…".equals(node.getProperty("cq:template").getString())){

processExport(node);

}}

} catch (RepositoryException e) {/*…*/} finally{/*logout*/}}}

… in a busy, busy class

22

private void processExport(final Node node) {// original method: ~100 loc

try {

String group;

if (node.hasProperty(PROPERTY_GROUP)) {

group = node.getProperty(PROPERTY_GROUP).getString();

} else {

LOG.warn("There is no group. Stop export.");

return;

}

/*…*/

File csvFile = File.createTempFile(“…”, "csv");

exportToFile(group, /*…*/, csvFile);

/*…*/

} catch(/*…*/) {/*…*/} finally {cleanupTempFiles();/*…*/}

Single Responsibility Principle & Clean Code

23

▪ “A class should have only 1 reason to change”
▪ Clean Code: find the “reason(s)”:

▪ Event loop
▪ Data retrieval
▪ Data processing
▪ Export to FileSystem
▪ … in specialized format

this part might
lead to
philosophical
debates…

Single Responsibility Principle & TDD

24

▪ … or you can look at
it from a TDD
point of view

▪ TDD: imagine
writing tests for it…
▪ -> meh

Image “meh” by GalacticWanderlust, License CC BY-ND 2.0

https://www.flickr.com/photos/shuttercat7/2343908332/
https://www.flickr.com/photos/shuttercat7/2343908332/
https://creativecommons.org/licenses/by-nd/2.0/

The TDD way

25

▪ Don’t be clever at testing…
▪ … instead, aim at fixing the code
▪ Write the tests first…
▪ … then find the code that works best for the

tests
▪ Start simple – but be thorough & complete

Specify your rules with plain unit tests

26

@Test

public void test_toList_allEmpty() throws Exception {

List<String> row = exporter.toList(new MyExportData());

assertEquals("It should export nulls as empty strings",

Arrays.asList("", ""), row);

}

/** production code*/

/* … */

items.stream()

.filter(item -> item != null)

.map(this::toList)

.forEach(rowConsumer::accept); // List::add in tests,

/* … */ // OutputStream.write in prod code

Don’t be clever at testing, fix the code instead

27

class ExportEventListener {

public void onEvent(final EventIterator events) {

final Dao dao = new DaoJcrImpl(repository);

final MyService service = new MyService(dao);

while (events.hasNext()) {

final Event event = events.nextEvent();

final ProcessingContext ctx = toProcessingContext(event);

service.process(ctx);}}}

public class MyService {

private final Dao dao;

private final Exporter exporter;

public void process(final ProcessingContext ctx) {

final Data data = dao.getData(ctx);

exporter.export(data);}}

SRP & TDD

28

▪ TDD:
▪ Event loop: simple setup
▪ DAO: AemMock / MockJcrSlingRepository
▪ Data processing: POJOs -> unit testable
▪ Export to FileSystem: using POJOs
▪ Specialized format: plain Java -> unit testable
▪ Service: each “piece” can be replaced by stub

SRP & Clean Code

29

▪ Clean Code: 1 class per “reason” / ”concern”
▪ Event loop (Entry point)
▪ Data retrieval (DAO + Adapter)
▪ Data processing (Domain logic)
▪ Export to FileSystem (Gateway)
▪ Specialized export format (Strategy)
▪ Service: integrate pieces (Dependency Injection)

TDD & Clean Code

30

▪ Bottom line:
▪ To make TDD work you need to decouple code
▪ … using SRP, DI, “Ports” etc.
▪ … i.e. Clean Code principles
▪ -> TDD will lead you to Clean Code
▪ (… if you stick to the rules…)

▪ But how does it work on application-scale?

31

Application-scale Dependency Management

The Dependency Rule – for AEM

32Inspired by “The Clean Architecture” by Uncle Bob Martin, https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

Enterprise
Domain

specific
Use Cases

“source code
dependencies
can only point
inwards” Actros, MPC,

Enterp. Rules

Trucker Profile,
EQP Code,
Rules

ControllersOSGi
SysDate

DAOs

FS

DB
JCR

SOAP/REST

ResourceResolver

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

Simple Example

33

▪ Approach 1
package com.mercedes-benz.trucks.domain;

public class Actros {

static Actros fromRequest(HttpServletRequest req) {/* … */};

}

▪ Approach 2
package com.mercedes-benz.trucks.integration.web;

public class ActrosAdapter {

Actros toActros(HttpServletRequest req) {/* … */};

}

▪ => which one works according to the Dependency Rule?

Simple Example

34

▪ Approach 1
package com.mercedes-benz.trucks.domain;

public class Actros {

static Actros fromRequest(HttpServletRequest req) {/* … */};

}

▪ Approach 2
package com.mercedes-benz.trucks.integration.web;

public class ActrosAdapter {

Actros toActros(HttpServletRequest req) {/* … */};

}

▪ => Keep outer layer dependencies out of inner layers

Ports & Adapters / Dependency Inversion

35

▪ “But the Use Cases and Domain objects need
data from the outer layers!”

▪ “How can I read from and write to the outer
layer without depending on it?”

▪ -> Dependency INVERSION
▪ -> “Ports”

(simplified: outer layers behind interfaces)

36

TDD + Dependency Rule = key to success

Identify the Domain

37

▪ … yes, it exists
▪ Start at the core: start at the Domain

▪ … it’s the code that’s the easiest to test
▪ -> you’ll start at 100% coverage
▪ … then stay at 100%

▪ -> E.g. keep the ResourceResolver / JCR
out of your Domain, Rules and APIs

This approach scales & works also for…

38

▪ Services
▪ Models
▪ Components
▪ Workflows
▪ Listeners
▪ …

How does it pay off for us in the real world?

39

▪ We reach 100% coverage (in new code)
▪ Sometimes, we still have bugs…

▪ … but mostly in the front end / JavaScript
▪ … or because of production data mismatch

▪ We’re faster
▪ Developers no longer lose their minds ;-)

Useful links

40

▪ Ports & Adapters
▪ DAO / Repository Pattern
▪ Clean Architecture / Dependency Rule
▪ 3 Rules of TDD / Bowling Game Kata
▪ Single Responsibility Principle
▪ “The more testing you do…”

http://alistair.cockburn.us/Hexagonal+architecture
http://deviq.com/repository-pattern/
https://www.amazon.com/Clean-Architecture-Robert-C-Martin/dp/0134494164
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
https://speakerdeck.com/artenes/the-bowling-game-kata-in-java
http://principles-wiki.net/principles:single_responsibility_principle
https://thephp.cc/termine/2017/04/symfony-live-cologne/testen-je-mehr-du-es-tust-desto-mehr-wirst-du-es-lieben

Code examples

41

https://github.com/mensemedia/adaptTo2017
▪ Exporter:

Refactored version of a real life project
(w/ 100% coverage)

https://github.com/mensemedia/adaptTo2017

42

#thx

Image: pixabay, License: CC0 Creative Commons

https://pixabay.com/de/junge-verkr%C3%BCppelt-kr%C3%BCcken-2027483/

43

Questions?

#HappyHacking

44

Andreas Czakaj (CTO)
mensemedia Gesellschaft für Neue Medien mbH
Neumannstr. 10
40235 Düsseldorf
Germany

Email: andreas.czakaj@mensemedia.net
Twitter: @AndreasCzakaj

Blog: https://blog.acnebs.com/

mailto:andreas.czakaj@mensemedia.net
https://blog.acnebs.com/

