
APACHE SLING & FRIENDS TECH MEETUP
 BERLIN, 25-27 SEPTEMBER 2017

Developers' Dues For Successful DevOps
Julian Sedding

About me – Julian Sedding

2

§  Freelance consultant
§  CQ 5/AEM since 2008
§  ASF Committer – jsedding@apache.org

§  Apache Jackrabbit
§  Apache Sling

§  Apache HttpComponents

3

What is DevOps?

What is DevOps?

4

“[…] there are three primary practice areas that are

 usually discussed in the context of DevOps.

§  Infrastructure Automation – […]

§  Continuous Delivery – […]

§  Site Reliability Engineering – […]”

— from https://theagileadmin.com/what-is-devops/

Infrastructure Automation

5

“create your systems, OS configs, and app

 deployments as code.”

Continuous Delivery

6

“build, test, deploy your apps in a fast and

 automated manner.”

Site Reliability Engineering

7

“operate your systems; monitoring and

 orchestration, sure, but also designing
 for operability in the first place.”

8

Operability

What is Operability?

9

“Operability is the ability to keep […] a

 system […] in a safe and reliable
 functioning condition, according to
 pre-defined operational requirements.”

— from https://en.wikipedia.org/wiki/Operability

Operational Requirements

10

§  Performance
§  Availability
§  Predictable resource usage
§  Scalability
§  Easy to diagnose
§  Configurability (at runtime)

Threats to Operability

11

§  Excessive or unpredictable resource usage
§  CPU
§  Memory / Heap

§  I/O – disk, network, sockets, …

§  Dependencies to 3rd party systems
§  Programming errors, e.g. deadlocks

Operability Mindset

12

§  How will your code impact the system?
§  Don’t (only) guess. Test, measure and monitor!

§  Is the behavior of your code adaptable at runtime?
§  Can it be disabled?
§  What happens if the unexpected happens?

§  Does it provide adequate information for analysis?

13

Simple Good Practices

Logging - always use appropriate levels

14

§  ERROR and WARN messages should be clear
and actionable for operations.

§  INFO messages are for generally interesting
events during normal operation.

§  TRACE or DEBUG may require the source
code to fully understand what’s happening.

Logging - a side note on Slf4J

15

§  Always use format patterns.
E.g. LOG.debug(“x:{}, y:{}”, x, y)

§  Never use String concatenation when
logging. E.g. LOG.debug(“x:” + x)

§  Only guard expensive calls with
LOG.isDebugEnabled()and friends.
E.g. LOG.debug(“x:{}”, expensiveX()))

Exception Handling

16

§  Never swallow exceptions. Ever. Always log
(with stack trace) or re-throw.

§  Deal with exceptions as soon as possible. It
only gets harder further from the cause.

§  Usually, there is no need to invent custom
exception classes.

Monitoring

17

§  Expose key characteristics via JMX
§  What is interesting?

§  Rate of events over time, e.g. requests / sec
§  Size of data-structures, e.g. size of a job queue
§  Durations, e.g. duration of data import
§  Statistical variation of values over time,

average, percentiles, etc.

Configuration

18

What needs to be configurable?
§  Values unknown during development
§  Values that vary across deployments
§  Values that may change over time
§  Turning on/off (new) features, e.g. via

ConfigurationPolicy.REQUIRE

19

Example: 3rd party integration via HTTP

About The Example

20

§  Real-world scenario
§  Caused by lack of key “good practices”
§  Illustrates a solution that follows some

simple good practices and what this can
lead to.

The Scenario

21

§  Symptom: all publish systems down
§  Cause: internal 3rd party system is down

§  Hang on, this shouldn’t pull down publishers?!

§  Cause (take 2): HTTP requests to 3rd party
cannot complete and never time out
§  3rd party HTTP requests are made during page

rendering, blocking all page rendering; eventually
server thread-pool may become exhausted

Diagnosis

22

§  No meaningful log messages
§  Thread dumps show multiple waiting threads

pointing to a class that uses HttpClient
§  The HttpClient has no timeout by default
§  3rd party system confirmed to be down

First Aid

23

§  Timeouts for HttpClient instances are set
programmatically -> no runtime config

§  Disabling the relevant OSGi Component may
lead to NullPointerExceptions

è No (easy) options left to stabilize the system!

Quick Fixes

24

§  Implemented timeout OSGi configuration for
the failed OSGi Component

§  What about other usages of HttpClients?
è Use hard-coded timeout via utility class

Why do we need to fix so many places?

Architecture Considerations

25

§  How to avoid repeating the same failure?
§  Should a developer using HttpClient need to

§  … implement its configuration?
§  … know about the best configuration up-front?
§  … know about its life-cycle?

§  Can we make usage easier?
§  Can we make configuration more consistent?

HttpClient Configuration Support

26

§  Configure HttpClient via OSGi configuration
§  Use pre-configured HttpClient, available as

service (inject using @Reference)
§  Choose between the default configuration or a

named configuration

— https://github.com/code-distillery/httpclient-configuration-support

27

DEMO

Avoiding A Repeated Disaster

28

Lessons learned during extensive testing
§  Always close HttpResponses – otherwise

connection pool may become blocked
§  Use ResponseHandler – auto-closes response
§  Better: consume and close InputStream (from

HttpResponse#getContent()) – allows
connection re-use

BTW: this is all documented – just not very intuitive

Possible Next Steps

29

§  Safety net for unclosed HttpResponse objects
§  Monitoring (JMX MBeans)

§  Connection-pool statistics
§  Request rates, durations, response sizes

§  Web Console Plugin
§  Overview of configurations and consuming services
§  Simpler UI for configurations?

§  Configurable Caching?

Similar Solutions

30

§  wcm.io Caravan
§  http://caravan.wcm.io/commons/httpclient/

§  Netflix Hysterix
§  https://github.com/Netflix/Hystrix

31

Conclusion

Practice Simple Good Practices

32

It pays off to be mindful about
§  Logging
§  Exception handling
§  Monitoring
§  Configuration

Beware of 3rd Party Integrations

33

§  Extra complexity, extra risks – be extra
careful

§  Decouple integrated systems
§  Prevent cascading failures
§  Always use timeouts

§  Consider blacklisting or a back-off strategy

Testing: Orders of Magnitude Matter

34

Test your code under realistic conditions
§  Volume and distribution of test data and load:

use real data if available, otherwise randomize
§  Concurrent execution: validate correctness,

look out for contention
§  Monitor how often your code is executed. As

frequently as expected? Why not?

Red Flags

35

§  3rd party integrations
§  Batch processes (interrupt, re-start, throttle)
§  Similar (boiler-plate) code copied repeatedly
§  “This is not part of my task” – An opportunity

to factor out orthogonal concerns?

36

Thank you for your time!

37

Questions?

