
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 25-27 SEPTEMBER 2017

Continuous content updates with Kafka
Jörg Hoh, Adobe Systems



Motivation

2

§ Lots of usecases require integration of
content-based solutions with (message-
based) backend-systems.

§ Often „content delivery“ (a.k.a your website) 
is considered the end of the „data“ pipeline.
§ It‘s not!



Typical approaches for data exchange

3

Imports
§ Periodic pull from backend system(s) and parse 

the data

Exports
§ Provide the data via a REST-like interface and let

the other(s) pull and parse it.



§ Real-time data streaming pipelines
§ Highly scalable and production proven
§ Based on the publish-subscribe pattern

Apache Kafka?

4



Data ingestion with Kafka

5

§ Realtime, asynchronous
§ Typed data (using Avro, Kryo, Jackson, ...)
§ Just read data from a single queue

§ All sources push to this queue



Feeding back data

6

Write data to a queue and let one or more
consumers read it

§ Logs
§ Audit information
§ Content, UGC, form submissions, ...
§ (AEM replication?)



The design

7

ConsumerManager

Threadpool
running

KafkaConsumersMyConsumer

MyConsumer

AbstractConsumer

AbstractProducer



A simple Consumer

8

@Component(label="News importer",...)

@Service()

public class Importer extends AbstractConsumer<String, String> {

public void handleRecords(ConsumerRecords<String, String> records) {

Iterator<ConsumerRecord<String, String>> iter = records.iterator();

while (iter.hasNext()) {

ConsumerRecord<String,String> record = iter.next();

String payload = record.value();
...

}

...

}



Demo: Producer

9



Demo: Consumer

10



Rethink your architecture!

11

§ Even if AEM is only serving content, it‘s not 
disconnected from other systems.

§ Having the chance to easily transfer data
from and to other systems will change your
architecture!



12

§ Twitter: @joerghoh
§ Sample code: 

https://github.com/joerghoh/kafka-
integration


