
Ever wondered what is inside the TarMK's tar

files? What is a segment and what is a record?

How garbage collection works and why (or why

not)?

This session will answer these questions and

many more. It will shed light on the inner

working of the TarMK, its system requirements

and performance characteristics. It will help

participants to better understand and diagnose

the cause of common problems and present

tools and techniques for diagnosing and

debugging.

Finally there will be a preview of what new

1

features and enhancements we are currently

working on.

1

The TarMK is a tiny part of the whole AEM

stack. It is one of multiple persistence options

of the Java Content Repository implementation

Jackrabbit Oak.

2

The TarMK is a fast, small and simple

embedded hierarchical database engine

serving as a persistence backend for the

Jackrabbit Oak Java Content Repository. It

implements multi-version concurrency control

and stores all data in tar files in an append

only way.

3

4

Multi version concurrency control coordinates

concurrent access by giving users (the illusion

of having) exclusive access to the repository.

5

Updating a tree creates a complete new copy

of that tree. Unchanged nodes are referenced

in the previous tree to avoid duplicating them.

Note how changing any node will always

cause its whole parent hierarchy to change.

6

Conceptually each changed node creates a

new tree. Unless the same node is edited over

and over again each tree references all its

predecessors.

Each tree represents a revisions of the

repository. The ordered list of the trees form a

revision history, which reflects how the

repository evolved to its present state. For the

TarMK a revision is represented by the

identifier of the root node of the respective tree

and a revision history is simply a list of such

identifiers.

7

A revision is persisted by serialising the nodes

of its respective tree into a stream of records.

Serialisation progresses in post order to

ensure dependencies are always stored first.

This guarantees that a serialised node is

always fully readable even if a crash occurs at

anytime.

8

To make records addressable the stream of

records is chunked up into segments. A

segment is identified by a random UUID (its

segment id). Segments contain some header

information and a list of records. Records are

addressable inside a segment via its offset. A

record id is thus a pair consisting of a segment

id and an offset. The maximum size of a

segment is determined by its address space.

The offset of a record id is a 16 bit integer and

records are 4 byte aligned in their segment

resulting in a maximal segment size of 262'144

bytes.

9

Segments are appended into tar files. Once a

tar file becomes full (265MB by default) some

auxiliary entries are added and a new tar file is

started. Subsequent tar file names include an

ever increasing sequence number to maintain

a strict order. The auxiliary entries consist of an

index of the segments for quicker lookup and a

list of segments referenced from this tar files

for analysing reachability during garbage

collection.

The letter in the tar file’s names refer to its

generation. When the garbage collector is able

to collect enough segments from a tar file such

10

that there is at least 25% space saving for that

file, the file is rewritten into a new generation

leaving out the garbage collected segments.

By default tar files are memory mapped for fast

access. So it is important to avoid allocating all

available RAM to the JVM (e.g. heap) as

otherwise the OS would not have enough

space for memory mapping the tar files, which

could lead to some form of thrashing.

10

Writing everything in a way such that it only

references already written items makes the

persistence format resilient against unclean

shutdown, crashes, power cuts etc. In these

cases recovery is automatic and transparent

during the next start-up. More sever

corruptions (e.g. bit flip in tar files) need

manual intervention to resolve. However, the

MVCC nature of the TarMK makes it easy to

roll back to the last good state.

11

Backup files in a directory listing indicate that a

automatic recovery has occurred at start-up.

In the case of a crash the tar file that has been

last written to might become corrupt. As it

hasn’t been cleanly closed it will have a

missing or corrupt index (the .idx file is always

written last and it is check-summed). In the

recovery case corrupt tar files are backed up,

all recoverable entries are written to a new tar

file and a new graph and index entry is added.

12

Excerpt of log file entries when an automatic

recovery of a tar file occurs at start-up. The

process recovers all valid segment entries from

the corrupt tar file and regenerates the graph

and index entries. The original tar file is backed

up before the regenerated one is created.

13

The journal.log file contains an ordered list of

revisions (record ids of root nodes) where later

entries are appended to the end of the file.

Removing entries from the end of the journal

causes a roll back of the TarMK to a previous

revision.

14

The check run mode of the oak-run utility can

be used to find the latest good revision. It

traverses all revisions from the journal

backward until it finds a good one. Command

line arguments specify how thoroughly

individual revisions should be checked. In

particular the --bin option controls than

handling of binaries. Specifying 0 skips reading

binaries, which is useful when a blob store is

configured. The check process does not

modify the repository itself but rather outputs

the first good revision it finds (if any). Editing

the journal.log file needs to be done manually.

15

oak-run check outputs the record ids of the

revisions it is checking and any errors that

occur along the way.

16

Once oak-run check found a good revision it

will output its record id.

Note, that the TarMK also has a basic variant

of rolling back the journal.log build into its start

up behaviour: if the latest record id in the

journal.log cannot be accessed (e.g. because

its segment is missing), it will log a warning

“Unable to access revision f2178987-09d2-

48de-abc7-7718dc8b8c74.63b8, rewinding..”

and tries continuing with the previous record id

in the journal.

17

While the append only storage model has

many advantages, it leads to a store that only

ever grows. No amount of removed nodes will

cause the store to shrink. A garbage collection

process is required to free space used by

unreferenced records. Garbage collection can

either run online (concurrent to normal

repository operation) or offline (with exclusive

access to the store).

Conceptually both modes are almost the same.

Their efficacy can greatly vary though.

18

Since tar files, segments and records are

immutable, the garbage collector cannot just

remove unreferenced items. Instead it will

clone the current head state such that it

doesn’t reference previous states anymore.

This is called the compaction phase as it

creates a compact representation of the

current head state. The subsequent clean-up

phase removes segments containing the old,

now unreferenced states. Clean-up creates a

new generation of any tar file containing at

least 25% of garbage (non referenced

segments) and removing the old tar file. New

19

tar files have its generation letter increased.

E.g. data00000a.tar will become

data00000b.tar.

19

When running offline revision garbage

collection oak-run compact outputs a list of

current tar files, the current size of the

repository, the steps it is performing

(compacting, cleaning up) and a list of the tar

files it removed.

20

It will update the journal to only contain the

record id of the new head stated created in the

compaction phase and subsequently output a

list of tar files after garbage collection

concluded as well as the final size, a list of

removed files, a list of added files and the time

the whole process took.

21

Online revision garbage collection works the

same as offline only that it is started from

within a running TarMK instance. However,

running within an live instance leads to some

additional complications:

• Traversing the reachability graph is

expensive as the respective graphs are

enormously dense. It is a contender for

system resources (CPU, disk, lock). As it is

a scan operation it also has advert affects

on caches that are hot for normal system

operation.

• An additional estimation phase should avoid

22

online revision garbage collection from

running if not enough garbage has been

accumulated. Unfortunately the estimation

phase already has similar effects on normal

system operation as the garbage collection

process itself.

• The compaction phase races against

concurrent writes: when a write was

performed concurrently to the compactor

creating the clone of the current head state,

the new changes need to be compacted

first. This process can repeat multiple times

as concurrent writes occur. The number of

retries can be configured and there is an

option to eventually force compaction by

acquiring exclusive write access to the

store. Both, giving up and forcing

compaction is not optimal though. In the

first case a lot of work is just thrown away

and in the second case concurrent writes

start piling up until the compactor eventually

finished.

• There are additional gc root from the heap

and from later generations blocking

segments from being removed when they

22

wouldn’t be blocked in the offline revision gc

case.

22

Additional gc roots are introduced by

• A subtle implementation problem during the

compaction process. This problem will

cause the clone of the head stated created

by the compaction phase to reference

record in an older revision.

• The application on top of the TarMK

referencing older revisions. As a JCR

session is based on the head revision from

the time it was opened, that revision will

ultimately be referenced from the JVM’s

heap.

23

Together with the enormous density of the

reference graph above two issues often cause

the clean-up phase to be less effective than

desired.

23

Improving online revision garbage collection

requires changes in the segment format.

Repositories of older formats are incompatible

to the new format and need to be migrated.

24

The problem with the compacted head

referencing older states is fixed in the next

version of the TarMK. This leads to a clear

separation between gc generations. That is,

each time compaction is performed a new

generation is written that does not have a

reference to any previous generation. To avoid

references from heap (“old sessions”) to block

clean up from removing old revisions, a

retention time base clean-up mechanism is

employed: by default anything that is older that

one generation is removed and sessions still

referring to such old revisions are

25

automatically refreshed to the current head

revision.

25

In preparation for further improvements (mainly

wrt. to performance and scalability) we are

working on further changes to the storage

format. To improve scalability we mainly aim at

making garbage collection a background

process that would run during idle times. At the

same time there is attempts to partition the

compaction step such that it would be possible

to run partial garbage collections (i.e. on parts

of the tree).

26

27

28

