
APACHE SLING & FRIENDS TECH MEETUP

BERLIN, 28-30 SEPTEMBER 2015

Modern Web Applications with Sightly

rev 2.20151005

@raducotescu
Apache Sling committer
Computer Scientist @ Adobe Systems
radu@apache.org

adaptTo()

Modern Web Applications with Sightly

2

We’re talking about Sightly? Again?!

adaptTo()

Modern Web Applications with Sightly

3

What’s changed since last September?

1. The Sightly reference implementation is now a part of
Apache Sling’s core bundles and it’s actively maintained 

adaptTo()

Modern Web Applications with Sightly

4

What’s changed since last September?

2. In January 2015 version 1.1 of the language’s
specification was published:  

• no more reserved option names 

• URI manipulation options 

• data-sly-repeat (similar to data-sly-list) 

• <sly/> (simpler alternative to data-sly-unwrap)

adaptTo()

Modern Web Applications with Sightly

5

What’s changed since last September?

3. Several performance improvements brought Sightly on-
par with the JSP Scripting Engine (backed by
performance tests)

adaptTo()

Modern Web Applications with Sightly

6

What’s changed since last September?

4. We’ve deprecated the asynchronous JavaScript Use API
(mostly a clone of the Resource API) in favour of a leaner
synchronous API provided by the
org.apache.sling.scripting.javascript
bundle.

adaptTo()

Modern Web Applications with Sightly

7

What’s changed since last September?

5. More developers have started using Sightly in their
projects

adaptTo()

Modern Web Applications with Sightly

8

We have a language specification. We also
have a reference implementation. But I still

think we’re missing something…

adaptTo()

Modern Web Applications with Sightly

9

Sightly Best Practices

1. Components content structure 
Organising our components thinking about reusability
and flexibility is really important. 

2. Markup 
We need to use the simplest markup that does the job. 

3. Use API 
Having too many options can be confusing at times.

adaptTo()

Modern Web Applications with Sightly

10

Components content structure

1. Try to define a structure that’s flexible enough that will
naturally guide you to inherit from it 

2. Avoid creating a new component from scratch if you can
just extend one 

3. Define some extension points, even though you might not
be using them now

adaptTo()

Modern Web Applications with Sightly

11

Components content structure

adaptTo()

Modern Web Applications with Sightly

12

Markup

Sightly aims to help developers write simple, uncluttered,
easy to understand markup.

Ideally a template’s markup should be as close as possible to
the markup that will be rendered.

Avoid thinking with a programming mindset when writing
Sightly templates. Logic belongs somewhere else (hint: Use-
API).

adaptTo()

Modern Web Applications with Sightly

13

Markup - data-sly-text

DOs
<!--/* ok for placeholders */-->
<p data-sly-text=“${properties.text}">Placeholder removed on
rendering.</p>

<!--/* if there are no placeholders */-->
<p>${properties.text}</p>

DONTs
<!--/* unnecessary, as you don’t gain anything */-->
<p data-sly-text=“${properties.text}"></p>

adaptTo()

Modern Web Applications with Sightly

14

Markup - data-sly-attribute

DOs
<!--/* use it with attribute maps */-->
<div data-sly-attribute=“${component.attributes}”>…</div>

<!--/* otherwise */-->

DONTs
<!--/* overkill */-->

adaptTo()

Modern Web Applications with Sightly

15

Markup - data-sly-element

DOs
<!--/* context changeable elements */-->
<list data-sly-element=“${list.ordered ? ‘ol’ : ‘ul’}”>…</list>

<heading data-sly-element=“${component.h}”>…</heading>

DONTs
<!--/* hiding logic */-->
<div data-sly-element=“${comp.elem}”></div>

adaptTo()

Modern Web Applications with Sightly

16

Markup - data-sly-test

DOs
<!--/* store test evaluation for if/else */-->
<div data-sly-test.author=“${wcmmode.edit}”>…</div>
<div data-sly-test=“${!author}”>…</div>

DONTs
<!--/* repeatedly call the same test expression */-->
<!--/* use it to define variables in your templates */-->

adaptTo()

Modern Web Applications with Sightly

17

Markup - data-sly-list

DOs
<!--/* use it on markup that will be rendered */-->
<ul class=“fruits” data-sly-list.fruit=“${fruits}”>
 <li class=“list-item ${fruitList.odd ? ‘odd’ : ‘even’}”>
 ${fruit}

DONTs
<!--/* ok only if you cannot use data-sly-repeat */-->
<sly data-sly-list.paragraph=“${paragraphs}” data-sly-unwrap>
 <p>${paragraph}</p>
</sly>

adaptTo()

Modern Web Applications with Sightly

18

Markup - data-sly-repeat (since 1.1)

DOs
<!--/* use it on markup that will be rendered */-->
<p data-sly-repeat.paragraph=“${paragraphs}”>${paragraph}</p>

adaptTo()

Modern Web Applications with Sightly

19

Markup - data-sly-include

Recommendations 

<!--/* unwrap if the tag doesn’t provide meaningful markup */-->
<!DOCTYPE html>
<html>

<sly data-sly-include=“head.html” />
…

</html>

adaptTo()

Modern Web Applications with Sightly

20

Markup - data-sly-include

Recommendations 

<!--/* however you can avoid unwrapping it if… */-->
<!DOCTYPE html>
<html>

<head data-sly-include=“head.html”></head>
…

</html> 

head.html:
<title>${properties.title || properties[‘jcr:title’]}</title>

adaptTo()

Modern Web Applications with Sightly

21

Markup - data-sly-resource

Recommendations 

<!--/* same recommendations as for data-sly-include */-->

adaptTo()

Modern Web Applications with Sightly

22

Markup - data-sly-use

DOs
<!--/* integrate it on the top-most tag where you need it; avoid
unwrapping its container tag */-->
<ul data-sly-use.var=“${..}” data-sly-list=“${var.list}”>…

DONTs
<!--/* use it in loops */-->
<!--/* declare all your objects at the top of the script, on <sly>
tags or using data-sly-unwrap */-->

adaptTo()

Modern Web Applications with Sightly

23

Markup - data-sly-unwrap / <sly>

DOs
<!--/* use it sparingly, only when there’s no other option */-->
<head data-sly-use.clientlib="/libs/granite/sightly/templates/
clientlib.html">
 <sly data-sly-call="${clientLib.css @
categories='foundation'}" />

DONTs
<!--/* use it to remove markup that shouldn’t have been there in
the first place */-->

adaptTo()

Modern Web Applications with Sightly

24

Markup - the context option

DOs
<!--/* use it carefully, when you really know what you’re
doing*/-->
<div data-type=“comment” data-path=“${comment.path @
context=‘uri’}”>…

DONTs
<!--/* use context=‘unsafe’ if actually a better value could be
used */-->

adaptTo()

Modern Web Applications with Sightly

25

Use-API

It’s the only way to load helper objects for your Sightly
scripts.

While the specification only mentions templates, Java and
JavaScript objects, the API’s implementation from Sling is
much more powerful.

adaptTo()

Modern Web Applications with Sightly

26

Use-API

In Sling the Use-API can load:

1. Sling Models (they’re really cool to use!)
2. Java objects (whether they are OSGi services, are

adaptable from SlingHttpServletRequest,
Resource, implement Use or not, exposed from
bundles or stored in the repository)

3. JavaScript objects, through the use function
4. Any other script evaluated by a Script Engine from Sling

adaptTo()

Modern Web Applications with Sightly

27

Use-API - what’s the best option?

If the logic is not strictly tied to a component and the Use-
object is reusable between scripts:
➡ Java object stored in an OSGi bundle or a Sling Model

(dependency injection FTW)

If the logic is specific to a component:
➡ Java POJO stored in the repository, for best performance
➡ JavaScript stored in the repository, if your components

are maintained mostly by front-end developers 

Use objects in the repository should still be treated as API!

adaptTo()

Modern Web Applications with Sightly

28

Best practices on slides. Do we have an app?

Yes. It’s called Publick.

Initially developed by Nate Yolles, to host host his blog:
https://github.com/nateyolles/publick-sling-blog.git

Forked to implement best practices at:
https://github.com/raducotescu/publick-sling-blog.git

Purpose:
Commit it to Sling, as a best practices Sightly + other Sling
goodies fully functional demo application.

https://github.com/nateyolles/publick-sling-blog.git
https://github.com/nateyolles/publick-sling-blog.git

adaptTo()

Modern Web Applications with Sightly

29

What is Publick?

Yet another blog engine built on top of Apache Sling,
Sightly, AngularJS and Bootstrap.

AngularJS is only used for creating an interaction with
existing Sling services (mostly the user admin from
/system/userManager).

adaptTo()

Modern Web Applications with Sightly

30

adaptTo()

Modern Web Applications with Sightly

31

adaptTo()

Modern Web Applications with Sightly

32

adaptTo()

Modern Web Applications with Sightly

33

adaptTo()

Modern Web Applications with Sightly

34

Questions?

adaptTo()

Modern Web Applications with Sightly

35

Credits & resources

1. https://github.com/Adobe-Marketing-Cloud/sightly-spec/blob/master/
SPECIFICATION.md - Sightly HTML templating language specification

2. https://github.com/nateyolles/publick-sling-blog - original version of Publick
3. Hand-drawn icons from https://www.iconfinder.com/iconsets/49handdrawing

https://github.com/Adobe-Marketing-Cloud/sightly-spec/blob/master/SPECIFICATION.md
https://github.com/nateyolles/publick-sling-blog
https://www.iconfinder.com/iconsets/49handdrawing

