
APACHE SLING & FRIENDS TECH MEETUP
 BERLIN, 23-25 SEPTEMBER 2013

Scaling CQ5
Michael Marth | Adobe Engineering

CQ5?

 Web Content Management system built
on Sling/JCR stack

 CQ5 scaling concepts applicable to
other Sling applications

 CQ5 specific concepts:
 Author instances/publish instances
 Replication: technology to transport

serialized JCR content between instances
 Dispatcher: web server plugin for caching

adaptTo() 2013 2

Performance vs. Scalability

adaptTo() 2013 3

 Performance: “it takes X secs to do Y”
 Scalability: “it takes X secs to do Y

simultaneously Z times”
 But performance can help with scalability

 This talk
 is about horizontal scalability (vertical

scaling is trivial)
 is about pre-Oak scalability patterns

Patterns

1. High Volume and High Performance Delivery
2. High Frequency Input Feed
3. Many Editors
4. High Processing Input Feed
5. High Volume Input Feed
6. Geo-distributed Editors
7. Many DAM assets
8. Geo-distributed disaster recovery

adaptTo() 2013 4

High Volume and High Performance Delivery
- Description

 Use Case:
 High traffic site (100m impressions/d)

 Examples: adobe.com
 Limiting factor

 CPU on publish

adaptTo() 2013 5

High Volume and High Performance Delivery
- Solution Pattern

 Leverage dispatcher caching as much as possible
 in latest dispatcher: single-page dispatcher flush and scripted flushing, use

to cache/flush content in dispatcher
 SSI and/or client-side for personalized content
 Selectors for query caching

 CDN with short TTL

adaptTo() 2013 6

High Volume and High Performance Delivery

 Related to rendering performance, see also
 CQ performance patterns (use CQ timing component, prefer

tree walking over JCR queries, use ClientLibraryManager to
concat and minify JS, etc, see [1])

 Generic performance patterns (reduce requests with e.g. css
sprites, gzip responses, put JS calls at bottom of HTML, etc,
see [2])

 Anti-Pattern
 Adding publishers before leveraging caching

[1] http://dev.day.com/docs/en/cq/current/deploying/performance.html
[2] http://shop.oreilly.com/product/9780596529307.do

adaptTo() 2013 7

High Frequency Input Feed - Description

 Use Case: news feed import (moderate
amounts, but constant updates)

 Limiting factor
 Dispatcher cache invalidation

 Therefore actual limiting factor is CPU on publish

adaptTo() 2013 8

High Frequency Input Feed - Solution Pattern
1

 Set up content structure so that other pages do not get
invalidated on dispatcher cache
 if possible: highly volatile content e.g. in /etc
 with latest dispatcher: single-page flush possible

 Separate replication queue (so that main queue is not blocked)

adaptTo() 2013 9

High Frequency Input Feed - Solution Pattern
2

 Set up content structure so that other pages do not get
invalidated on dispatcher cache
 as previous pattern

 Import directly into Publish (no replication necessary)

adaptTo() 2013 10

High Frequency Input Feed

 Questions to ask
 Human filtering/processing needed? Then

imports should be on author and
replicated.
 If no: is the use case OK with different states on

publish?
– if yes: no replication needed, then pattern 2 is preferable

adaptTo() 2013 11

Many Editors - Description

 Use Case:
 News or media portal
 >50 editors editing content concurrently

 Limiting factor
 Depends on what do the editors actually

do:
 Heavyweight editing, e.g. MSM rollouts, starting

WFs: repository- or CPU-bound

 Lightweight editing: CPU bound

adaptTo() 2013 12

Many Editors - Solution Pattern 1

 Sharding: split up different web sites / parts of web sites onto
separate author instances

 Publish instances are shared

adaptTo() 2013 13

Many Editors - Solution Pattern 2

 Sharding: split up different web sites into separate author
instances, but replicate into one main author, e.g. for shared
workflow processes
 Practical if the shards do not need to share content.
 Cross-replication can be done, but will be hard to keep consistent

 Publish instances are shared

adaptTo() 2013 14

Many Editors

 Notes
 Author dispatcher helps to reduce CPU

load on author instances
 Author cluster instead of sharding will

mitigate the problem if CPU-bound

adaptTo() 2013 15

High Processing Input Feed - Description

 Use Case:
 DAM import of images

 1000 images at once

 happens regularly

 other editors are editing content at the same
time

 Limiting factor
 CPU, memory on author

adaptTo() 2013 16

High Processing Input Feed - Solution Pattern
1

 Separate processing instances from human editing instances
 Offload 1 Workflow step, e.g. thumbnail generation from PSDs
 There can be more than 1 processing instance
 Replicate back and forth in packages if possible
 CQ5.6.1: share DS between instances and replicate without binary,

offloading framework

adaptTo() 2013 17

High Processing Input Feed - Solution Pattern
2

 Separate pre-processing instances for uploading
 There can be more than 1 pre-processing instance
 CQ5.6.1: share DS between instances and replicate without binary

adaptTo() 2013 18

High Processing Input Feed

 Notes
 Author cluster can help mitigate the

problem, but editors must edit content on
slave

 Throttling WFs or execution during night
can help mitigate the problem

 If the import is limited by CPU needed
image conversion consider using
ImageMagick rather than Java

adaptTo() 2013 19

High Volume Input Feed - Description

 Use Case:
 Product data import

 1 million products, 10000 modifications/day

 Limiting factor
 Writing to the repository

 reads are also blocked

 Potentially (to a lesser degree) in case
repository scans are needed to create diffs:
 CPU for calculating diffs

 Repository read caches get flushed

adaptTo() 2013 20

High Volume Input Feed - Solution Pattern

 Separate import instance to process imports, partition if possible
 only useful if import requires significant CPU (e.g. no diff delivered)

 Replicate to author
 Replicate as package
 CQ5.6.1: share DS between instances and replicate without binary

 Replication to publish as package if possible

adaptTo() 2013 21

High Volume Input Feed

 Questions to ask
 Can the import be throttled? Most problems get much less severe.
 Do all changes get on publish?

 Notes
 Use batch saves (1000 nodes) on import (reduces overhead in indexing, etc

and speeds up the import overall)
 Import as nt:unstructured rather cq:Page if possible

 If not: switch off heavy listeners (e.g. ContentSync) or use the
JcrObservationThrottle

 Anti-Pattern
 Usage of network disc (usually have high latency)
 Replicating to publish through same replication queue as editorial content

adaptTo() 2013 22

Geo-distributed Editors

 Use Case:
 Editors located in different geos (US,

EMEA, APAC)

 Limiting factor
 Bandwidth between editor location and

author server location

adaptTo() 2013 23

Geo-distributed Editors - Solution Pattern

 Use Dispatcher in front of Author
 Guiding principle: limit traffic between Dispatcher and editor

location.
 gzip traffic
 Use Client Library Manager to minimize traffic

 minify, concat and gzip all client libraries

 Cache all responses that are not under /content in
 Editor’s browser cache

 Potentially also dispatcher cache

adaptTo() 2013 24

Geo-distributed Editors

 Notes
 In extreme cases consider writing

templates that treat author renditions
differently from publish renditions
(especially reducing the number of
necessary requests, e.g. by dropping
requests to tracking servers, external CSS,
etc)

 Or use Scaffolding for editing

adaptTo() 2013 25

Many DAM Assets

 Use Case:
 Many assets (>5Mio) in DAM

 Limiting factor
 Disc space

adaptTo() 2013 26

Many DAM Assets - Solution Pattern

 Split physical storage of data store and repository tar files
 tar files need disc with very low latency
 for data store high latency is acceptable
 Locate data store on cheap discs remotely (NAS, S3)

 Share data store between instances
 In 5.6.1: use binary-less replication in case of shared DS to minimize

network traffic

adaptTo() 2013 27

Many DAM Assets

 Notes
 In case of shared DS: the DS garbage

collection needs to be run on an instance
that keeps references to all assets in DS

 In 5.6.1: huge performance improvements
(~10x or more) for DS GC when the
persistence is tar-based

adaptTo() 2013 28

Geo-distributed disaster recovery

 Use Case:
 Data centers located in different geos
 One DC shall act as failover for author

 Limiting factor
 Latency between DCs (in very low latency

cases CRX clustering could be used)

adaptTo() 2013 29

Geo-distributed disaster recovery - Solution
Pattern

 Use file level tools like rysnc to create replicas in 2nd DC
 Hourly: sync data store

 This is usually the most time consuming part
 Sync can be performed anytime, due to add-only data store architecture

 Nightly:
 Create incremental backup into filesystem on 1st DC to get consistent state

of files
 Rsync backup to 2nd DC. For that period CQ on 2nd DC must not be running.

adaptTo() 2013 30

Thanks!

adaptTo() 2013 31

