
APACHE SLING & FRIENDS TECH MEETUP
 BERLIN, 23-25 SEPTEMBER 2013

Scaling CQ5
Michael Marth | Adobe Engineering

CQ5?

 Web Content Management system built
on Sling/JCR stack

 CQ5 scaling concepts applicable to
other Sling applications

 CQ5 specific concepts:
 Author instances/publish instances
 Replication: technology to transport

serialized JCR content between instances
 Dispatcher: web server plugin for caching

adaptTo() 2013 2

Performance vs. Scalability

adaptTo() 2013 3

 Performance: “it takes X secs to do Y”
 Scalability: “it takes X secs to do Y

simultaneously Z times”
 But performance can help with scalability

 This talk
 is about horizontal scalability (vertical

scaling is trivial)
 is about pre-Oak scalability patterns

Patterns

1. High Volume and High Performance Delivery
2. High Frequency Input Feed
3. Many Editors
4. High Processing Input Feed
5. High Volume Input Feed
6. Geo-distributed Editors
7. Many DAM assets
8. Geo-distributed disaster recovery

adaptTo() 2013 4

High Volume and High Performance Delivery
- Description

 Use Case:
 High traffic site (100m impressions/d)

 Examples: adobe.com
 Limiting factor

 CPU on publish

adaptTo() 2013 5

High Volume and High Performance Delivery
- Solution Pattern

 Leverage dispatcher caching as much as possible
 in latest dispatcher: single-page dispatcher flush and scripted flushing, use

to cache/flush content in dispatcher
 SSI and/or client-side for personalized content
 Selectors for query caching

 CDN with short TTL

adaptTo() 2013 6

High Volume and High Performance Delivery

 Related to rendering performance, see also
 CQ performance patterns (use CQ timing component, prefer

tree walking over JCR queries, use ClientLibraryManager to
concat and minify JS, etc, see [1])

 Generic performance patterns (reduce requests with e.g. css
sprites, gzip responses, put JS calls at bottom of HTML, etc,
see [2])

 Anti-Pattern
 Adding publishers before leveraging caching

[1] http://dev.day.com/docs/en/cq/current/deploying/performance.html
[2] http://shop.oreilly.com/product/9780596529307.do

adaptTo() 2013 7

High Frequency Input Feed - Description

 Use Case: news feed import (moderate
amounts, but constant updates)

 Limiting factor
 Dispatcher cache invalidation

 Therefore actual limiting factor is CPU on publish

adaptTo() 2013 8

High Frequency Input Feed - Solution Pattern
1

 Set up content structure so that other pages do not get
invalidated on dispatcher cache
 if possible: highly volatile content e.g. in /etc
 with latest dispatcher: single-page flush possible

 Separate replication queue (so that main queue is not blocked)

adaptTo() 2013 9

High Frequency Input Feed - Solution Pattern
2

 Set up content structure so that other pages do not get
invalidated on dispatcher cache
 as previous pattern

 Import directly into Publish (no replication necessary)

adaptTo() 2013 10

High Frequency Input Feed

 Questions to ask
 Human filtering/processing needed? Then

imports should be on author and
replicated.
 If no: is the use case OK with different states on

publish?
– if yes: no replication needed, then pattern 2 is preferable

adaptTo() 2013 11

Many Editors - Description

 Use Case:
 News or media portal
 >50 editors editing content concurrently

 Limiting factor
 Depends on what do the editors actually

do:
 Heavyweight editing, e.g. MSM rollouts, starting

WFs: repository- or CPU-bound

 Lightweight editing: CPU bound

adaptTo() 2013 12

Many Editors - Solution Pattern 1

 Sharding: split up different web sites / parts of web sites onto
separate author instances

 Publish instances are shared

adaptTo() 2013 13

Many Editors - Solution Pattern 2

 Sharding: split up different web sites into separate author
instances, but replicate into one main author, e.g. for shared
workflow processes
 Practical if the shards do not need to share content.
 Cross-replication can be done, but will be hard to keep consistent

 Publish instances are shared

adaptTo() 2013 14

Many Editors

 Notes
 Author dispatcher helps to reduce CPU

load on author instances
 Author cluster instead of sharding will

mitigate the problem if CPU-bound

adaptTo() 2013 15

High Processing Input Feed - Description

 Use Case:
 DAM import of images

 1000 images at once

 happens regularly

 other editors are editing content at the same
time

 Limiting factor
 CPU, memory on author

adaptTo() 2013 16

High Processing Input Feed - Solution Pattern
1

 Separate processing instances from human editing instances
 Offload 1 Workflow step, e.g. thumbnail generation from PSDs
 There can be more than 1 processing instance
 Replicate back and forth in packages if possible
 CQ5.6.1: share DS between instances and replicate without binary,

offloading framework

adaptTo() 2013 17

High Processing Input Feed - Solution Pattern
2

 Separate pre-processing instances for uploading
 There can be more than 1 pre-processing instance
 CQ5.6.1: share DS between instances and replicate without binary

adaptTo() 2013 18

High Processing Input Feed

 Notes
 Author cluster can help mitigate the

problem, but editors must edit content on
slave

 Throttling WFs or execution during night
can help mitigate the problem

 If the import is limited by CPU needed
image conversion consider using
ImageMagick rather than Java

adaptTo() 2013 19

High Volume Input Feed - Description

 Use Case:
 Product data import

 1 million products, 10000 modifications/day

 Limiting factor
 Writing to the repository

 reads are also blocked

 Potentially (to a lesser degree) in case
repository scans are needed to create diffs:
 CPU for calculating diffs

 Repository read caches get flushed

adaptTo() 2013 20

High Volume Input Feed - Solution Pattern

 Separate import instance to process imports, partition if possible
 only useful if import requires significant CPU (e.g. no diff delivered)

 Replicate to author
 Replicate as package
 CQ5.6.1: share DS between instances and replicate without binary

 Replication to publish as package if possible

adaptTo() 2013 21

High Volume Input Feed

 Questions to ask
 Can the import be throttled? Most problems get much less severe.
 Do all changes get on publish?

 Notes
 Use batch saves (1000 nodes) on import (reduces overhead in indexing, etc

and speeds up the import overall)
 Import as nt:unstructured rather cq:Page if possible

 If not: switch off heavy listeners (e.g. ContentSync) or use the
JcrObservationThrottle

 Anti-Pattern
 Usage of network disc (usually have high latency)
 Replicating to publish through same replication queue as editorial content

adaptTo() 2013 22

Geo-distributed Editors

 Use Case:
 Editors located in different geos (US,

EMEA, APAC)

 Limiting factor
 Bandwidth between editor location and

author server location

adaptTo() 2013 23

Geo-distributed Editors - Solution Pattern

 Use Dispatcher in front of Author
 Guiding principle: limit traffic between Dispatcher and editor

location.
 gzip traffic
 Use Client Library Manager to minimize traffic

 minify, concat and gzip all client libraries

 Cache all responses that are not under /content in
 Editor’s browser cache

 Potentially also dispatcher cache

adaptTo() 2013 24

Geo-distributed Editors

 Notes
 In extreme cases consider writing

templates that treat author renditions
differently from publish renditions
(especially reducing the number of
necessary requests, e.g. by dropping
requests to tracking servers, external CSS,
etc)

 Or use Scaffolding for editing

adaptTo() 2013 25

Many DAM Assets

 Use Case:
 Many assets (>5Mio) in DAM

 Limiting factor
 Disc space

adaptTo() 2013 26

Many DAM Assets - Solution Pattern

 Split physical storage of data store and repository tar files
 tar files need disc with very low latency
 for data store high latency is acceptable
 Locate data store on cheap discs remotely (NAS, S3)

 Share data store between instances
 In 5.6.1: use binary-less replication in case of shared DS to minimize

network traffic

adaptTo() 2013 27

Many DAM Assets

 Notes
 In case of shared DS: the DS garbage

collection needs to be run on an instance
that keeps references to all assets in DS

 In 5.6.1: huge performance improvements
(~10x or more) for DS GC when the
persistence is tar-based

adaptTo() 2013 28

Geo-distributed disaster recovery

 Use Case:
 Data centers located in different geos
 One DC shall act as failover for author

 Limiting factor
 Latency between DCs (in very low latency

cases CRX clustering could be used)

adaptTo() 2013 29

Geo-distributed disaster recovery - Solution
Pattern

 Use file level tools like rysnc to create replicas in 2nd DC
 Hourly: sync data store

 This is usually the most time consuming part
 Sync can be performed anytime, due to add-only data store architecture

 Nightly:
 Create incremental backup into filesystem on 1st DC to get consistent state

of files
 Rsync backup to 2nd DC. For that period CQ on 2nd DC must not be running.

adaptTo() 2013 30

Thanks!

adaptTo() 2013 31

