
APACHE SLING & FRIENDS TECH MEETUP

BERLIN, 23-25 SEPTEMBER 2013

Hypermedia APIs on top of Apache Sling

with Granite UI

2 adaptTo() 2013

What is a Hypermedia API?

3 adaptTo() 2012

Basic principals of Hypermedia APIs

 Based on Representational State

Transfer (REST) - Uniform Interface

constraint.

 Hypermedia as the Engine of

Application State (HATEOAS).

 We talk about media types, not

domain objects.

4 adaptTo() 2012

How did it work in traditional APIs?

Client

Serialized Domain Objects

Client-side

Business Process

Logic

Client-side

Domain Objects

Server

Server-side

Business Process

Logic

Server-side

Domain Objects

5 adaptTo() 2012

How does it work the Hypermedia way?

4

Client

Hypermedia Markup

Custom

Media Types

HTML5

Media Types

Server

Server-side

Business Process

Logic

Server-side

Domain Objects

6 adaptTo() 2012

Goals and advantages of Hypermedia APIs

 Decoupling

 Encapsulation

 Reusability

7 adaptTo() 2012

Disadvantages

 More data to transfer: Textual

representation versus compact data

such as JSON.

 Latency may be greater than in more

optimized APIs.

8 adaptTo() 2013

Example

9 adaptTo() 2012

Our implementation of a Hypermedia API

We like . . .

 to use HTML5 as the hypermedia

language - it already defines quite a lot

of media types.

 to extend HTML5 on our own with

further, specific media types as

required.

10 adaptTo() 2012

Example: User Preferences Dialog

11 adaptTo() 2012

Example: Source code

Show Modal

<div id="my-modal" class="modal">

 <div class="modal-header">

 <h2>Modal from markup</h2>

 <button type="button" class="close" data-dismiss="modal">×</button>

 </div>

 <div class="modal-body">

 <p>This modal was created from markup.</p>

 </div>

 <div class="modal-footer">

 <button data-dismiss="modal">Close</button>

 <button class="primary" data-dismiss="modal">Save</button>

 </div>

</div>

12 adaptTo() 2012

Example: How did we define the new

vocabulary?

 class="modal"
Defines the markup for modal

-> modal must have an id

 data-toggle="modal"
Shows or hides the modal

-> must have href to reference the modal

 data-dismiss="modal"
Closes the modal

-> always closes the modal it belongs to

13 adaptTo() 2012

Example: How to implement the vocabulary

modal.js

$(document).on(“click”, “[data-toggle=modal]”, function(event) {

 var id = $(event.target).attr(“href”)

 $(id).show();

 $(event).preventDefault();

});

Contextual jQuery

Use the context (here: href/id) to get all your

data.

14 adaptTo() 2012

Example: What makes it different?

 We define a “media type” / “web

component” modal dialog that can be

opened and dismissed.

 The client never knows about “User

Preferences”, it only knows about

modal dialogs and how to handle them.

 The form submit is a media

implementation - free with HTML5.

 No need for special logic client-side.

15 adaptTo() 2012

What does Granite UI provide?

 CQ components that create semantic

markup.

 Every CQ component creates markup

for one specific web component

(wizard, grids, form fields, etc.)

 Client-side javascript to enhance user

experience.

 You configure pages instead of writing

the markup on your own.

16 adaptTo() 2012

What next?

 Granite UI isn’t currently meant to be

used in customer projects.

-> Create your own semantics / vocabulary in

your projects.

17 adaptTo() 2013

Questions?

