
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 25-27 SEPTEMBER 2017

TarMK: Facts and Figures
Michael Dürig / Valentin Olteanu, Adobe

Understanding how the TarMK uses system

resources like RAM, CPU, disk space and IO

is crucial for effective deployments and

operations. This session focuses on the

capabilities and characteristics of the TarMK by

presenting the relation between content, load

and consumed resources. We show how

TarMK behaves under various operation

conditions, illustrate with data from our internal

testing and explain how the numbers can be

interpreted. Moreover, we examine the impact

and effect of running online revision garbage

collection and explain how to monitor, detect

1

and recover from anomalies.

1

Slooooow

2

https://www.flickr.com/photos/ionelpop/6057199614/sizes/o/

Why is my instance slow? What is it doing?

Where is the bottleneck? How do I fix it?

2

Agenda

3

▪ AEM, Oak and the TarMK
▪ System Resources
▪ Problems and Symptoms
▪ Outlook

After an introduction of the inner workings of

Oak and the TarMK , this presentation shows

how system resources are used and what tools

are available to monitor them. It presents a

case study of typical problems its symptoms

and possible remedies. Finally it concludes

with an outlook on future areas of
improvement.

3

Introducing the TarMK

4

Content Repository

The TarMK is a tiny part of the whole AEM

stack. It is one of multiple persistence options

of the Java Content Repository implementation

Jackrabbit Oak.

4

Introducing the TarMK

5

Content Repository

MongoMK

Oak Core

Oak JCR

RDBMK TarMK

The TarMK is a tiny part of the whole AEM

stack. It is one of multiple persistence options

of the Java Content Repository implementation

Jackrabbit Oak.

5

Features of the TarMK

6

▪ Embedded Database
▪ Hierarchical
▪ Fast / Small
▪ Vertical scalability
▪ MVCC / append only

The TarMK is a fast, small and simple

embedded hierarchical database engine

serving as a persistence backend for the

Jackrabbit Oak Java Content Repository. It

implements multi-version concurrency control

and stores all data in tar files in an append

only way.

6

Records and Segments

7

cbde7a01-b30c-4716-a9a7-29d7ce1f58387d78a945-4553-409b-adad-7050256c05fe

D E F … … … …B C A

Each change to a node or a property is written

to a record and appended to the list of existing

record. Records can reference older records

for data deduplication. Unreferenced records

can be removed to reduce disk usage,

increase data locality and reduce

fragmentation. Records are grouped into

segments, which are the smallest unit of

persistence.

7

Segments and Tar Files

8

data00000a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00001a.tar
6e162b11-3782-47ca-a78d-4da12149df8d

9e884e53-b1b2-4906-a0a7-3a51c77579fd

090e4312-a115-44e8-ab47-0a89f380ab64

f2178987-09d2-48de-abc7-7718dc8b8c74

7e68db78-3aca-4a34-a72f-c174e8f8c93d

data00002a.tar
7911f3af-a286-4c4f-a944-8ed235c723e1

e098df2a-3958-4d4b-a651-6b8498c22f66

67d9fc69-d2d6-4543-a189-d24d4c00db67

ec4e2563-7d2e-4c54-a52f-9582c3a6fb54

f32f6bf8-c7cc-4e20-aa94-d2e783bf76d5

Segments are appended into tar files. Once a

tar file becomes full (256MB by default) a new

tar file is started. By default tar files are

memory mapped for fast access. So it is

important to avoid allocating all available RAM

to the JVM (e.g. heap) as otherwise the OS

would not have enough space for memory

mapping the tar files, which could lead to disk

thrashing.

8

9

System Resources

Oak requires various system resources like

disk, memory, IO, etc. to operate properly and

efficiently. This section explains how these are

used during a typical write operation and how

to monitor for anomalies.

9

Write Operation

10

Persist

Save

Change

DISK

A write operation roughly consists of three

phases: first changes are transiently

accumulated in the user’s session.

Subsequently when saving the session the

commit phase processes all changes. Finally

the persist phase atomically makes those

changes durable by committing them to the

journal.

10

Change

11

▪ Transient on heap
▪ Heap fragmentation
▪ JVM garbage collection

▪ Overflowed to disk
▪ Write ahead
▪ Segment fragmentation

DISK

Changes are transiently accumulated on the

heap and overflowed to disk to ensure memory

usage is bounded. Transient overflows are

implemented as write ahead logic of the

respective records. Transient changes can

thus cause the disk footprint to increase, might

result in a new tar file being created and

mapped into memory (off-heap memory

usage). The transient changes cached on the

heap contribute to heap fragmentation thus

increasing the workload of the the JVM’s

garbage collector.

11

Save

12

▪ Process Changes
▪ Enqueue
▪ Validate, update

▪ Single thread
▪ Process each change, O(n)
▪ Discarded sessions cause

segment fragmentation

DISK

To save its transient changes a session is

placed onto a queue of pending save

operations. Once it arrives at the head of the

queue all its changes are processed in order to

ensure validity (referential integrity, uniqueness

constraints, type soundness, etc.) and to

update secondary data (indexes, auto

generated items and values, etc.). During this

processing the CPU is utilized by a single

thread handling each single change. This often

cause other nodes to be read from disk thus

utilizing some of the disk IO bandwidth. Overall

resource requirements are in the order of the

12

number of changes in the session.

Discarding a session without saving this

causes all written ahead records to become

garbage, which contributes to segment

fragmentation.

12

Persist

13

▪ Persist
▪ Update journal
▪ Dequeue

▪ Fan-out
▪ Asynchronous indexes
▪ Workflows, Assets, Rendition
▪ Replication

To make the processed changes durable Oak

updates its journal with the id of the new root

node and removes the session from the queue

of pending save operations afterwards. This

step does not directly involve a considerable

amount of system resources. It often causes a

considerable fan out subsequently though:

updates to asynchronous indexes, generation

and sending of observation events, workflow

processing, asset ingestion, replication, etc.

13

Concurrent Changes

14

DISK

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Persist

Save

Change

Save

Change

Save

ChangeChange

In a busy system there are many requests

being processed in parallel and concurrently.

The level of parallelism is limited by the

available resources: e.g. the number of CPU

cores limit how many threads can be in the

runnable state at any given point in time. Once

that limit is met parallel request start

contending for resources, which adds

overhead and reduces overall throughput. (E.g.

CPU context switches, waiting for disk IO, etc).

Thread dumps are useful to examine

concurrency and contention at system level.

14

Change

Concurrent Changes

15

Persist

Save

Change

It is the change phase that has the highest

level of parallelism as individual sessions are

mostly independent. However as they share

the same memory and disk they may end up

waiting for those resources on a heavily

contended system.

In contrast the save and the persist phases

have the highest level of concurrency as they

are effectively executed serially contending for

the TarMK commit queue. (An optimistic

approach to waiting on the queue – seemingly

more attractive at first – is actually inferior: in

case of a conflict between concurrent saves all

15

but one participants need to reattempt the

operation. This involves re-processing all

changes thus adding more load to an already

contended system, which in turn increases the

risk for again running into a conflict).

15

Users OSJVMTarMK

Monitoring

16

• Read count / rate
• Write count / rate
• Age

SessionMBean

• Number of sessions
• Read / write load and rate
• Query load and timing
• Observation load and timing

RepositoryStatsMBean

• Commit count and rate
• Number of queued commits
• Queuing times

SegmentNodeStoreStatsMBean

• Disk foot print
• Bytes written
• Number of tar files

FileStoreStatsMBean

• Disk read / write
• Garbage collection
• Threads
• Heap

jmc, jstat, jstack, jmap

• Disk read / write
• CPU state

vmstat, iostat

Oak exposes various endpoints for monitoring

the resource it uses:

• Each session exposes an SessionMBean

instance, which contains counters like the

number and rate of reads and writes to the

session.

• The RepositoryStatsMBean exposes

endpoints to monitor parallel requests like

the number of open sessions, the session

login rate, the overall read and write load

across all sessions, the overall read and

write timings across all sessions and overall

load and timings for queries and

16

observation.

• The SegmentNodeStoreStatsMBean

exposes endpoints to monitor commits:

number and rate, number of queued

commits and queuing times.

• The FileStoreStatsMBean exposes

endpoints reflecting the amount of data

written to disk, the number of tar files on

disk and the total footprint on disk.

In addition to those endpoints there is many

JMV and OS specific tools that help gaining

further insight in what the system is busy with:

• Java Mission Control (jmc) is a very

powerful tool to collect about every

performance aspect of a running JVM. Its

ability to record IO per Java process can

sometimes be invaluable.

• The command line tools jstat, jstack, and

jmap are useful to get inside into the JVM’s

garbage collector, the JVM’s threads and

the JMV’s heap, respectively.

• The OS level tools vmstat and iostat can be

used to examine IO and CPU usage at the

operating system level.

16

Together these monitoring endpoints provide

different perspectives on the overall throughput

in the system at the various layers: from JCR

sessions to commits in the TarMK to disk IO of

the TarMK. Combined with information

collected with JVM and OS level tooling they

provide a wealth of information about the

system’s health and to help finding

bottlenecks.

16

17

Case Study: Thrashing

17

Thrashing

18

In computer science, thrashing occurs when a computer's virtual
memory subsystem is in a constant state of paging, rapidly
exchanging data in memory for data on disk, to the exclusion of
most application-level processing. This causes the performance
of the computer to degrade or collapse.

https://en.wikipedia.org/wiki/Thrashing_(computer_science)

18

data00001a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00000a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00002a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00003a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00004a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

data00005a.tar
57c76710-a690-4028-a498-26477293b5

2236063c-77a0-47b0-a16a-30f4899990a4

d9f5b47d-0fea-4a77-aa8e-3fdc0302ef24

20bffcd4-9d48-46ca-a263-fa49ba1d8cb3

1d32af7d-3c1c-4892-a44a-44ae4a5d4e33

Thrashing in the TarMK

19

In the TarMK, thrashing occurs when the working set of tar files does not fit
into system memory, so every repository operation leads to disk access.

■ working set
virtual memory physical memory

TarMK leverages memory mapping

mechanisms provided by the OS to cache the

tar files. It means that when a segment is read,

the corresponding tar is loaded into memory

and kept for future access. This goes on until

the available RAM is filled and at that point, old

tars have to be unloaded for newly accessed

ones. This results in extra disk reads, which

makes the instance slow. When the set of tars

that are frequently accessed, also called the

working set, is way bigger than the cache size,

almost all the processing time is spent waiting

for the disk.

19

Test Setup

20

Hardware specs

2 vCPUs 8 GB (4GB Heap) 500 GB Magnetic Disk (EBS)

Requests throughput

We have created a test to expose the limit at

which the system is starting thrashing due to

insufficient memory. Hardware specs are on

purpose low to reach this limit faster.

Incoming requests simulate a typical sites

authoring scenario (browsing and editing

content), but with constant throughput over two

weeks.

20

Disk

21

IOPS

GB

Size on disk

Disk IO

Tipping point marked with red line – size on

disk > 16GB and reads > writes

21

CPU and Commits

22

CPU

Commit queue

After tipping point, CPU spends most of the

time waiting for the disk.

After tipping point, the commit queue

increases, which results in higher response

times.

22

Memory

23

JVM memory

System memory

Not much to comment on memory, the

expected (constant) levels of usage.

23

Response Times

24

Mean response time (CreateParagraph)

24

Now What?

25

NOW WHAAAAAAAT?!

1.

2. Qualify the problem

3. Take prompt actions

!

!
!

!

!

25

Potential actions (1)

26

1. Upgrade hardware
▪ Add RAM
▪ Optimize IO

Ideally, the system should have enough free

memory to cache the full segmentstore. But, if

this is not possible, any increase in RAM will

help mitigate the problem.

To further optimize IO consider using a

dedicated data disk holding the tar files.

Reduce read-ahead and turn off transparent

huge pages on that disk. Also consider using a

dedicated disk for the Lucene NRT indexes.

26

A1: Upgrade (increase RAM to 32GB)

27

Si
ze

CP
U

IO
PS

Q
ue

ue

M
em

or
y

GB IOPS

After provisioning enough RAM to the instance

to hold the whole repository in memory, all the

parameters go back to normal values, even

with the same segmentstore that created

problems:

• CPU utilization is below 5%

• disk is used mostly for writes (triggered by

creating pages)

• and the commit queue is almost all the time

empty.

The Cache in Memory graph reflects the use of

memory mapped files: it progressively grows to

27

the same size as the segmentstore (as more

and more tars are accessed and cached by the

test), and shrinks after OnRC reduces the

footprint.

27

Potential actions (2)

28

2. Reduce repository
▪ Use a blob store
▪ Manage inactive content

(Content hygiene)
▪ Optimize indexes

To reduce the disk footprint regularly schedule

version purges. Also remove any temporary

and not needed content from the repository.

28

A2: Cleanup content (and offline revision cleanup)

29

M
em

or
y

Si
ze

GB

IO
PS

IOPS
CP

U

Re
qu

es
ts Maintenance

(OffRC)

Another solution to recover is to reduce the

segmentstore by cleaning up unnecessary

content. In this case, we delete some of the

previously created pages then run offline

revision cleanup (OffRC is needed here). As

observed, the segmentstore size drops to

about 5GB and when the test is restarted, the

instance goes back to the normal state. Also,

the system’s cache grows to the maximum

allowed by the physical RAM.

29

30

Outlook

30

Areas of Improvement

31

TarMK

Revision
cleanup

Commit
schedulerMonitoring

• Revision cleanup is an effective way to

reduce the TarMK’s disk footprint thereby

keeping locality high. By letting revision

cleanup focus on volatile content the

process is able to complete faster while at

the same time using fewer recourses.

• By introducing a commit queue and a

scheduler to prioritize and schedule

commits the TarMK can select an optimal

strategy to maximize throughput.

• Detailed monitoring endpoints for the

commit queue enables early detection of

system overload.

31

Thank you

32

Questions ?

32

33

Appendix

33

Typical Segment Store Composition

34

Content
20%

Indexes
28%

Version storage
23%

Checkpoints
25%

Other
4%

34

