
Apache Jackrabbit Oak offers better horizontal

scalability and concurrency than its

predecessor, Apache Jackrabbit 2. The

downside of which is increased chances of

conflicts between concurrent updates.

In this session I demonstrate how to deal with

such conflicts by taking advantage of Oak's

underlying consistency model. I will show how

to build functionality like counting, voting,

rating, negotiating, bidding, etc. common to

collaborative applications. Such functionality

traditionally requires some form of global

1

consensus (e.g. locking, atomic commit

protocols, ...). I will show how with Oak it is

often possible to avoid conflicts all together by

choosing the right content model. For cases

where this is not possible I will discuss the

mechanisms that Oak provides to deal with

conflicts while they occur and after the fact.

1

• Why should I care about conflicts? Why can’t

this be taken care of by the backend?

• What is a conflict? Specific to the application

domain and also to back-end. Definition for

Oak.

• How can we handle conflicts? What does

Oak offer? Examples.

2

All you need to know about JCR and Oak (for

this session):

• Oak is an implementation of the JCR (Java

content repository) standard

• A JCR is a hierarchical database. Its content

tree is made up of nodes and properties.

Properties are the leaves of the tree and

carry values.

• Oak heavily relies on commit hook plugins for

providing its functionality. A commit hook can

pass, edit or fail a commit.

• Custom commit hooks can provide further

functionality.

3

4

Conflicts appear in the context of collaboration.

While this is evident for some applications like

collaboratively editing the same spread sheet,

it isn’t for others. For example updating the like

counts on forum posts is a not so evident form

of collaboration. The necessity to rely on a

weaker consistency model for such large scale

applications force us to cope with conflicts

where we traditionally would have relied on the

backend.

Weaker consistency: giving up on ACID, aka

NoSQL, trade consistency for throughput

5

6

A conflict is caused by multiple parties

updating the same shared resource

concurrently in incompatible ways. The exact

meaning of incompatible is domain specific.

However, there is usually a common least

dominator specific to the back-end.

When building an application it is important to

know the conflict semantics of the back-end

and the conflict semantics of the application

domain. This allows the application to be built

in a way to avoid conflicts where possible and

to choose the cheapest method for resolving

them otherwise.

7

Updates on nodes never conflict with updates

on properties. Also updates on items with

different names never conflict. All conflict are

either between nodes of the same name or

between properties of the same name.

8

Updates of items of the same name and type

conflict when (marked with a red cross)

- changing an item that has been

concurrently removed

- adding an item that has been concurrently

added with a different value

- changing an item that has been

concurrently changed to a different value

Such updates do not conflict when (marked

with a green check)

- removing an item that has been

concurrently removed

9

- adding an item that has been concurrently

added with the same value

- changing an item that has been

concurrently changed to the same value

The other combination are not applicable as

they cannot occur: an item cannot be

concurrently removed or changed before it has

been added.

Oak’s ConflictHandler interface has one

method for each of these conflicts.

Implementations are responsible to resolve

these conflict according to the applications

need.

9

When saving changes Oak rebases them on

top of the latest trunk resolving conflicts along

the way. On success the rebased changes are

persisted. Otherwise saving fails with an

exception.

Rebasing is done by calculating the difference

between the current state of the sessions

against its base state and applying them on top

of the latest trunk. This is the point where

actual conflicts are detected and resolved

according to the mechanism shown on the

previous slide. Additionally this the point where

Oak allows injection of custom conflict

10

handlers.

10

11

Strategies for handling conflicts in order of

decreasing cost:

• Lock

• Well known, pessimistic approach

effectively serialising access to the

back-end thus leaving most CPU cores

idle.

• Requires upfront global consensus,

which can be expensive to acquire.

• Transparent to the application.

• Retry

• Optimistic brute force approach relying

on conflicts being rare.

12

• Conflicts are detected after the fact and

commits are retried by the application,

which wastes CPU cycles.

• Not transparent to the application due

to the retry logic necessary.

• Constrained by the conflict semantics of

the back-end being a subset of those of

the application. Otherwise some

conflicts will not be detected.

• Resolve

• Proactive approach relying on conflicts

being rare.

• Conflicts are detected after the fact and

resolved as part of the commit process

through custom commit hooks.

• Transparent to the application.

• Constrained by the conflict semantics of

the back-end being a subset of those of

the application. Otherwise some

conflicts will not be detected.

• Avoid

• Leverage conflict semantics of the

application to avoid conflicts.

• Fully parallel, no point of contention.

• Not transparent to the application as it

12

needs a conflict aware data model

12

Atomic counters are useful to implement e.g.

rating functionality for blog comments. More

complex behaviour (e.g. averages) can be

implemented by combining multiple counters.

A naïve counter implementation on Oak is

prone to data races though as in some cases

no conflict is detected on back-end.

13

This naïve implementation of a counter retries

to update its value until it succeeds. Apart from

the brute force approach, the implementation

has a data race: two concurrent increments by

the same value will result in the counter only

being updated once.

14

Leverage conflict semantics of the back-end to

resolve application specific conflicts. This

requires applications to choose their data

model accordingly.

15

A better approach uses a private counter per

involved process, avoiding conflicts altogether.

The sum of all private counters is the total sum

of the counter. In Oak we can take this further

and use a custom commit hook that will take

care of accumulating the individual counters

into one global value. Also as Oak implements

has strong session isolation we don’t need to

worry about name clashes of the involved

counters.

Accumulation allows for easy

indexing/sorting/querying of counters values,

which would otherwise not be possible.

16

The retry logic becomes unnecessary when

each process has its own counter: instead of

counting itself we set the desired increment

and let the accumulation logic in the commit

hook deal with updating the counter.

17

To accumulate the individual counter values

into on consistent counter value we need to

install a custom commit hook into Oak. A

commit hook is called once changes are

committed and can arbitrarily modify what is

being committed.

In our case we need to detect additions of
properties named oak:increment and add

their values to the value of the oak:counter

property. Subsequently we can discard the
oak:increment property as it is not needed

anymore and doesn’t need to be persisted. We

implement the commit hook by extending from

18

DefaultEditor. We need to override the

propertyAdded method, which is called

whenever the commit contains a newly added
property and the leave method, which is

called once this commit hook is done.

18

On initialisation we retrieve the current counter
value from the oak:counter property. In

addition the constructor receives a
NodeBuilder instance to record out changes

to the commit.

19

The propertyAdded method updates the

total value by adding this counters value and

subsequently discarding the transient
oak:increment property. When done the

oak:counter value will be assigned back to

the respective property in the leave method.

20

21

The concept is easily adapted to other uses

cases. For bidding in an auction we would

replace addition with maximum in the

accumulation step. This ensures eventually

awarding the highest bidder. An e-commerce

application would use set union instead of

addition to add items to a trolley. For signalling

a certain condition with a shared boolean flag,

we would use logical or instead of addition.

Most generally this concept applies whenever

the elements under consideration together with

the accumulation function form a semilattice.

22

Put simply: for any two elements we know how

to accumulate them.

22

Resolve conflicts as they occur instead of

retrying a failed commit. Requires injection of a

custom conflict handler. Oak supports this

through implementations of the
ConflictHandler and related interfaces.

23

A multi-value register is much like a register for

a single value unless that in the case of a

conflict it will store all conflicting values. Multi-

value registers provide a simple way for

applications to detect a conflict and resolve it

after the fact. Such a conflict resolution

scheme adds additional round trips in the

presence of conflicts though.

24

Updating the same property from two different

sessions concurrently with incompatibly values

should not fail (as it usually does). Rather

should it create the property as a multi-valued

storing both conflicting values.

Later updates can overwrite that value again.

25

Custom conflict handlers can be injected into

Oak to resolve conflicts from concurrent

updates. A conflict handler needs to implement

a method for every type of conflict that can

occur. The arguments to those methods

provide access to all values of the conflicting

parties. It has to come up with a resolution by
either choosing one of the values (OURS or

THEIRS) or by implementing some custom

merge algorithm (MERGED).

In addition a partial conflict handler can also

choose not to cope with a conflict and result
null instead. This means another partial

26

conflict handler further up the chain can take

care of the conflict. Oak composes all partial

conflict handlers into a (total) conflict handler.

This is done by chaining the partial conflict

handlers together and adding a default handler

at the end of the chain, which will just cause a

commit to fail if it detects an unresolved

conflict.

26

The implementations of
addExistingProperty and

changeChangedProperty read the values of

both parties, merge them into one multi-valued

property and use that value to resolve the

conflict.

27

The remaining cases can simply resolve to
OURS, THEIRS and MERGED, respectively.

28

29

30

Using carefully crafted data structures it is

often possible to avoid conflicts altogether. The

general pattern here is to provide a private

copy to every process involved and

accumulate the values later on. Oak supports

accumulation through custom commit hooks.

This way of avoiding conflict is loosely based

on “Convergent and Commutative Replicated

Data Types” [1]. The reason for the relative

simplicity of our implementations is Oak’s

rather strong consistency model (Oak is

sequentially consistency, which is only slightly

weaker than linearizable). The general

31

approach discussed in [1] is based on a much

weaker “eventual consistent” storage model.

Alternatively Oak also provides hooks to

resolve conflicts as they occur. This allows

conflicts to be handled as close as possible to

their source preventing the need to retry failed

commits.

[1]

http://hal.upmc.fr/file/index/docid/555588/filena

me/techreport.pdf

31

32

