
APACHE SLING & FRIENDS TECH MEETUP
BERLIN, 22-24 SEPTEMBER 2014

Oak, the Architecture of the new Repository
Michael Dürig, Adobe Research

This presentation is mainly about Oak’s architecture and design. Understanding these
concepts gives crucial insight in how to make the most out of Oak and to why Oak
might behave differently than Jackrabbit 2 in some cases.

1

Design goals

adaptTo() 2014 2

▪ Scalable

▪ Big repositories

▪ Clustering

▪ Customisable, flexible

▪ OSGi friendly

Jackrabbit Oak started early 2012 with some initial ideas dating back as far as 2008. It
became necessary as many parts of Jackrabbit 2 outgrew their original design. Most
of Jackrabbit 2’s features date back to the 90-ies and are not well suited for today's
requirements. Oak was designed to overcome those challenges and to serve as the
foundation of modern web content management systems.

Key design goals:
* scalable writes. The web is not read only any more.
* large amounts of data. There is much more as a few web pages nowadays.
* Built in clustering. Instead of built on top
* Customisable
* OSGi friendly

Since Oak doesn't need to be the JCR reference implementation, we gained some
additional design space by not having to implement all of the optional features (like
e.g. same name siblings and support for multiple work spaces).

2

Outline

adaptTo() 2014 3

▪ CRUD

▪ Changes

▪ Search

* CRUD: this presentation first covers the underlying persistence model: the tree
model and basic create, read, update and delete operations.

* Changes: being able to track changes between different revisions of a tree turns out
to be crucial for building higher level functionality.

* Search: while nothing much changed on the outside, search is completely different
in Oak wrt. Jackrabbit 2.

3

Tree model

adaptTo() 2014 4

a d

b c

Let’s consider a simple hierarchy of nodes. Each node (except the root) has a single
parent and any number of child nodes. The parent-child relationships are named, i.e.
each child has a unique name within its parent. This makes it possible to uniquely
identify any node using its path: a user can access all content by path starting from
the root node.

This is a key different to Jackrabbit 2 where each node was assigned an unique id to
look it up from the persistence store. In Oak nodes are always addressed its path
from the root. In this sense Oak stores (sub) trees while Jackrabbit 2 stores key value
pairs. In Oak one traverses down from the root following a path while in Jackrabbit 2
traversal was from a node to its parent up to the root.

* Tree persistence vs. key/value persistence
* Path vs. UID as primary identifier
* Traversing down vs. traversing up

4

Updating

adaptTo() 2014 5

?

x

a d

b c

Let’s consider what happens when another user updates parts of the tree. For
example adds a new node at /d/x. Such in place changes might confuse other users
whose tree suddenly change.

This is how Jackrabbit 2 works, each update is immediately made visible to all users.
Unfortunately, beyond the potential for confusion, this design turns out to be a major
concurrency bottleneck, as the synchronisation overhead of keeping everyone aware
of all changes as they happen becomes very high. The existing Jackrabbit architecture
was heavily optimized for mostly-read use cases, with only occasional and rarely
concurrent content updates. Unfortunately that optimisation no longer works too
well with increasingly interactive web sites and other content applications where all
users are potential content editors.

More generally the way such state transitions are handled has a major impact on how
efficiently a system can scale up to handle lots of concurrent updates. Many noSQL
systems use the concept of eventual consistency which leaves the rate (and often
order) at which new updates become visible to users undefined. This solves the
concurrency issue, but can lead to even more confusion as it might not be possible to
clearly define the exact state of the repository.

The hierarchical structure of Oak allows us to solve both of these issues by borrowing
an idea from version control systems like Git or Subversion.

5

MVCC

adaptTo() 2014 6

a d

b c

r2: /dr1: /d

r1: /a/b
r2: /a/b

r1: / r2: /

r2: /d/x

HEAD

Instead of overwriting the existing content, a new revision of content is created, with
new copies of the parent nodes all the way to the root if needed. This allows all users
to keep accessing their revision of content regardless of what changes are being
made elsewhere. All users are under the impression they operate on a private copy of
the whole repository (MVCC)

To make this work, each revision is assigned a unique revision identifier, and all paths
and content accessed are evaluated in the context of a specific revision. For example
the original version of the /d node would be found by following that path within
revision r1, and the new version of the node by following the path in revision r2. The
unchanged node /a/c would be reachable and identical through both revision r1 and
r2.

Additionally the repository keeps track of the HEAD revision that records what the
latest state of the repository is. A new user that has not already accessed the
repository would start with the HEAD revision.

The ordered list of the current HEAD revision together with all former HEAD revisions
form a journal, which represent a linear sequence of changes the repository went
through until eventually reaching the current HEAD revision.

* The tree model is key to understanding how Oak works

6

* Ideas borrowed from VCS like Subversion and Git: a tree with immutable update
goodies

6

adaptTo() 2014 7

Refresh and Garbage Collection

7

garbage

Refresh

adaptTo() 2014 8

Let’s consider what happens when a user on an old revision wants to go forward the
HEAD revision. Unlike with classic Jackrabbit, where this would always happen
automatically, in Oak this state transition is handled explicitly as a refresh operation.

Refresh in Oak is explicit where it was implicit in Jackrabbit 2. For backward
compatibility Oak provides some "auto refresh" logic. See the Oak documentation for
further details.

8

garbage

Garbage collection

adaptTo() 2014 9

After the refresh, the older versions of specific nodes may no longer be accessible by
any clients, and will thus become garbage, which the system will eventually collect.
This is a key difference to a version control system, and allows Oak repositories to
work even with workloads like thousands of updates per second without running out
of space.

9

adaptTo() 2014 10

Concurrency and Conflicts

10

r2a

Concurrent updates

adaptTo() 2014 11

r2br1

What about concurrent updates? Here we have two competing revisions, r2a and r2b.
Both modify the same base revision r1. The r2a revision removes the node at /a/b,
and r2b is the revision we saw earlier, which add a new node at /d/x.

11

Merging

adaptTo() 2014 12

r1 r3

merge

r2b

r2a

upates

We start with the base revision r1. Then the two new revisions are created
concurrently. Finally, the system will automatically merge the results, which will
create the new revision r3 containing the merged changes from r2a and r2b. The
merge could happen in different cluster nodes, different data centres or even
different local disconnected copies (e.g. like git clone).

12

Conflict handling: serialisation

adaptTo() 2014 13

▪ Fully serialised

▪ Fail, no concurrent update

▪ Partially serialised

▪ Concurrent conflict free updates

What happens when merging is not possible because two concurrent revisions
conflict? There are several strategies for handling this case:

* Full serialisation: don't allow concurrent updates and fail. This heavily impacts the
write rate in the face of many concurrent writers.

* Partial serialisation: instead of locking on the whole tree, lock on the root of the
modified sub tree. Allows concurrent updates of changes to separate sub trees.

Both strategies are currently implemented by Oak depending on the persistence
back-end in use.

13

Conflict handling strategies: merging

adaptTo() 2014 14

▪ Partial merge

▪ Conflict markers, deferred resolution

▪ Full merge

▪ Need to choose victim

Instead of pure serialisation a more sophisticated approach would be to semantically
merge conflicting changes. Generally this needs domain knowledge and cannot be
fully implemented in the persistence layer.

* Partial merging: persist conflict markers along with the conflicting changes for
deferred resolution by e.g. and administrator.

* Full merging: this inevitable leads to data loss as one of the changes have to be
preferred over the other. This is unless we can establish a total order over all
revisions, which is usually not the case.

Oak currently does not implement these strategies, though they could be plugged in.

14

adaptTo() 2014 15

Replicas and Sharding

15

Replica and caches

adaptTo() 2014 16

master copy full replica cache

Replicas are straight forward: each replica only needs to follow the primary. Thanks to
the immutable append only model of persistence, there is no need for invalidation.
Replicas can do their individual garbage collections cycles.
As a variant a replica can also serve as cache by only following frequently accessed
parts of the tree and ignoring updates to other parts.

16

Sharding strategies

adaptTo() 2014 17

by path by level by hash with caching

Sharding by path is the most straight forward variant. However as sub tree sizes tend
to be not evenly distributed shards end up to greatly vary in size.

Sharding by level turn out to be even more problematic as there will be more content
the deeper the tree while the root only has a single node. Although there are more
revisions on the root (as every change creates a new root node), garbage collection
will keep that number within reasonable limits.

Sharding by content hash is what the DocumentMK does and which turned out to be
most effective. A drawback of this approach is the loss of locality: the nodes of a path
tend to be spread across various shards forcing navigational access to access multiple
shards. An idea for addressing this is to allow each shard to cache a node's parent
nodes. Since the lower levels contains the most content caching the parents is cheap
while at the same time it restores locality.

17

adaptTo() 2014 18

Implementations

18

MicroKernel / NodeStore

adaptTo() 2014 19

▪ Tree / Revision model implementation

Responsible for

Clustering

Sharding

Caching

Conflict handling

Not responsible for

Validation

Access control

Search

Versioning

Unfortunately there is a bit of a naming confusion in Oak as the terms MicroKernel
and NodeStore might both refer to APIs and to architectural components and are
used somewhat interchangeably.

One way to think of it is that the MicroKernel is an implementation of the tree model.
While the NodeStore is a Java API for accessing the nodes of that tree model.

A MicroKernel implementation is responsible for all the immutable update mechanics
of the content tree along with conflict handling, garbage collection, clustering and
sharding. It doesn't have any higher level functionality like validation, complex data
types, access control, search or versioning. All the latter a implemented on to of the
NodeStore API.

19

Current implementations

adaptTo() 2014 20

DocumentMK TarMK (SegmentMK)

Persistence MongoDB, JDBC Local FS

Conflict handling Partial serialisation Full serialisation

Clustering MongoDB clustering Simple failover

Sharding MongoDB sharding N/A

Node Performance Moderate High

Key use cases Large deployments (>1TB),
concurrent writes

Small/medium deployments,
mostly read

Oak comes with basically two MicroKernel implementations: the DocumentMK
(formerly MongoMK) and the TarMK (aka SegmentMK). The DocumentMK started out
as being MongoDB backed but is now more flexible regarding the choice of the back-
end. A JDBC back-end is currently being worked on.
* The DocumentMK leverages the clustering and sharding capabilities of the
underlying back-ends and implements partial serialisation. Due to the extra network
layer involved, it has moderate single node performance, but scales with additional
cluster nodes.
* The TarMK uses local tar files for storage. It is not currently not cluster aware and
only offers a simply fail over mechanism but offers maximal single node performance.

The two MicroKernel implementations cover different uses cases: where
DocumentMK is preliminary for large deployments involving concurrent writes, the
TarMK is better suited to small to medium deployments, which are mostly read. We
expect the gap between the two implementations to decrease in the future as there
are ideas to make the TarMK more cluster ready while the DocumentMK still has
room for improved performance. Finally other implementations (e.g. Hadoop based)
are quite possible with the JDBC back-end for DocumentMK most likely being the first
one.

20

adaptTo() 2014 21

Access Control

21

Accessible paths

adaptTo() 2014 22

a d

cb

Access control is probably the most trick feature of JCR to implement. However it is
also a very prominent feature and might as well be considered "the killer feature" for
quite some content centric applications as implementing fine grained access control
on top of applications is difficult and error prone.

Access control in JCR allows a node to be accessible while it's parent isn't. This is
contrary to the tree model where all access is by path traversing down from the root
of the tree. We solved this in Oak by introducing the concept of "existence" for a
node. Nodes that are not accessible are still traversable but do not exist. That is, the
result of asking for a non accessible child node is indistinguishable from a "really" non
existing child: both do not exist. With this all syntactically correct paths eventually
resolve to a node, which however might not exist.

In this example all paths are traversable, however as only /, /d, and /a/b are
accessible only those nodes exist. The nodes at /a and /a/c do not exist.

22

xistentialism

adaptTo() 2014 23

▪ All paths traversable

▪ Node may not exist

▪ Decorator on NodeStore

root.getChildNode("a").exists();

root.getChildNode("a")

.getChildNode("b").exists();

⟹ false

⟹ true

This approach leads to a clean architecture where API clients needn't care about null
values or exceptions. Just traverse the path starting from root and check for existence
at the end.
The existence concept is implemented as a decorator of the tree model on top of the
MicroKernel by a thin wrapper of the relevant parts of the NodeStore API.

23

adaptTo() 2014 24

Comparing Revisions

24

Content diff

adaptTo() 2014 25

▪ What changed between trees

▪ Cornerstone for

▪ Validation

▪ Indexing

▪ Observation

▪ …

The content diff is key to most of Oak's higher level functionality. It allows to just
process the parts of the content tree that changed (during or after a commit) instead
of going through the whole repository. It is used e.g. for:
* Validation (node types, referential integrity, item names)
* Observation: apparently commit boundaries are get lost when the content diff is
done across more than a single revision. This is an important limitation wrt.
Jackrabbit 2 as some commit related information as the user or the time stamp might
not always be available in Oak.
* Indexing

25

What changed?

adaptTo() 2014 26

∆

Finding out what changed between revisions is crucial for much of Oak's higher level
functionality. Changes are extracted by comparing two trees. This is similar to a diff
in a version control system but applied to content trees.

A content diff runs from the root of two trees to its leaves. A node is considered
changed when it has added/removed/changed properties or child nodes. Each
changed node recursively runs a content diff on each of its changed child nodes.

Comparing trees in this way is generic as it works on any (sub) trees, not only from
the root. It is however heavily optimise for the case where an earlier revision is
compared against a later revision as this is the case most often encountered.

In the depicted case the sub-tree at /a doesn't need deep comparison as it is shared
between both revisions. The diff process can stop right here.

26

Example: merging

adaptTo() 2014 27

r1

r2a

r2b

r3

r1 ➞ r2a
“a” modified

“b” removed

∆

r1 ➞ r2b

“d” modified

“x” added

∆

Merging concurrent changes relies on content diffs: first the diff between r1 and r2a
is applied to r1 followed by the diff between r1 and r2b, which will finally result in the
new revision r3.

27

adaptTo() 2014 28

Commit Hooks

28

Commit hooks

adaptTo() 2014 29

▪ Key plugin mechanism

▪ Higher level functionality

▪ Validation (node type, access control, …)

▪ Trigger (auto create, defaults, …)

▪ Updates (index, …)

Commit hooks and their variants provide the key plugin mechanism of Oak. Much of
Oak's functionality is in one way or another implemented in this way:

* Validation of node types, access control, protected or invisible content
* Trigger for auto created or default values
* Updates for indexes or caches

29

Editing a commit

adaptTo() 2014 30

∆ ∆ + x

Commit hooks rely on content diffs and allow for validation or editing of a commit
before actually persisting it.

30

Commit hooks

adaptTo() 2014 31

▪ Based on content diff

▪ pass a commit

▪ fail a commit

▪ edit a commit

▪ Applied in sequence

A commit hook can either
* pass a commit on to be persisted unchanged
* fail a commit so it wont get persisted
* edit a commit so a changed tree will be persisted

Commit hooks are applied in sequence and tend to be expensive as most likely each
of them does a separate content diff.

31

Type of hooks

adaptTo() 2014 32

CommitHook Editor Validator

Content diff Optional Always Always

Can modify Yes Yes No

Programming model Simple Callbacks Callbacks

Performance impact High Medium Low

Editors and Validators are commit hooks in disguise. They do a single content diff
calling back to the respective implementations. This makes them considerably less
expensive the raw commit hooks. However due to the call back based programming
model they are more difficult to use.

32

adaptTo() 2014 33

Observers

33

Observers

adaptTo() 2014 34

▪ Observe changes

▪ After commit

▪ Often does a content diff

▪ Asynchronous

▪ Optionally synchronous

▪ Local cluster node only

Observers are related to commit hooks. In fact both share the same signature as they
get a before and an after state and can run a content diff on those processing the
differences. However observers are run after the fact. That is, after the content has
been persisted. Observers report what has happened while commit hooks report
what might happen.

Observers might or might not see each separate revision. After big cluster merges
they might receive bigger chunks spanning over multiple individual commits. There
might be no way to get to those individual commits as they might have already been
garbage collected on the other cluster node. The important part is that each observer
will see a monotonically increasing sequence of revisions.

34

Examples

adaptTo() 2014 35

▪ JCR observation

▪ External index update

▪ Cache invalidation

▪ Logging

As JCR observation in Oak is based on observers and those might not get to see all
commits, commit boundaries are usually lost. That is information attached to
individual commits like the user or a time stamp are only available on a best effort
basis in Oak.

External index updates are e.g. used for integration Solr.

35

adaptTo() 2014 36

Search

36

Query Engine

adaptTo() 2014 37

SELECT
WHERE x=y

/a//*

Parser

Parser

Parser
Index

Index

Traverse

Parser Index

parse execute post process

Although search supports the same languages as Jackrabbit (SQL and XPath), the
underlying implementations greatly differ.

Oak has pluggable parsers and indexes. For each query a suitable parser is first
searched and - if available - used to parse the query into an intermediate
representation. Then all registered indexes are asked to provide a cost estimate for
executing the query. Finally the query is executed choosing the cheapest index. If
there is no suitable index for a query the synthetic "traverse" index will be used. This
index, while very slow, allows each query to eventually succeed.

Oak's approach to query execution is closer to the RDBMS world than Jackrabbit 2 as
it allows for creating indexes to speed up queries.

37

Index Implementations

adaptTo() 2014 38

▪ Property (ordered)

▪ Reference

▪ Lucene

▪ In-content or file system

▪ Solr

▪ Embedded or external

Indexes are specified in content via special index definition nodes.

* Property index for properties of a given name. Can optionally by ordered.
* Reference index for looking up referees of referenceable nodes
* Lucene full text index for full text search. Stored in content replicates it
automatically across cluster nodes and make it easy to back up along with the
content.
* Solr can be run embedded but usually runs externally

38

adaptTo() 2014 39

Big Picture

39

Big picture

adaptTo() 2014 40

MicroKernel

Oak Core

Oak JCR

Oak API

NodeStore API

JCR API

Plugins

* The MicroKernel implements the tree model
* The NodeStore API exposes the tree model as immutable trees
* Oak core implements mutable trees on top of the NodeStore API.
* Plugins contribute much of the Oak core functionality like access control, validation,
etc. through commit hooks and observers.
* The Oak API exposes mutable trees, whose behaviour is shaped through the
respective plugins configured.
* JCR bindings contribute the right shaping for JCR by provisioning Oak with the right
set of plugins.

Other bindings besides JCR are possible. E.g. a HTTP binding as an alternative to the
current WebDav implementation. Also new application could use the Oak API directly
and only reuse the plugins as necessary for their needs.

40

Resources

adaptTo() 2014 41

http://jackrabbit.apache.org/oak/

41

http://jackrabbit.apache.org/oak/

adaptTo() 2014 42

Appendix

42

Resources

adaptTo() 2014 43

http://jackrabbit.apache.org/oak/

http://jackrabbit.apache.org/oak/docs/

https://svn.apache.org/repos/asf/jackrabbit/oak/trunk/

43

http://jackrabbit.apache.org/oak/
http://jackrabbit.apache.org/oak/docs/
https://svn.apache.org/repos/asf/jackrabbit/oak/trunk/

	Folie 1
	Folie 2: Design goals
	Folie 3: Outline
	Folie 4: Tree model
	Folie 5: Updating
	Folie 6: MVCC
	Folie 7
	Folie 8: Refresh
	Folie 9: Garbage collection
	Folie 10
	Folie 11: Concurrent updates
	Folie 12: Merging
	Folie 13: Conflict handling: serialisation
	Folie 14: Conflict handling strategies: merging
	Folie 15
	Folie 16: Replica and caches
	Folie 17: Sharding strategies
	Folie 18
	Folie 19: MicroKernel / NodeStore
	Folie 20: Current implementations
	Folie 21
	Folie 22: Accessible paths
	Folie 23: xistentialism
	Folie 24
	Folie 25: Content diff
	Folie 26: What changed?
	Folie 27: Example: merging
	Folie 28
	Folie 29: Commit hooks
	Folie 30: Editing a commit
	Folie 31: Commit hooks
	Folie 32: Type of hooks
	Folie 33
	Folie 34: Observers
	Folie 35: Examples
	Folie 36
	Folie 37: Query Engine
	Folie 38: Index Implementations
	Folie 39
	Folie 40: Big picture
	Folie 41: Resources
	Folie 42
	Folie 43: Resources

